Acknowledgement
This work was partly supported by the Technology Development Program (S3207312) funded by the Ministry of SMEs and Startups (MSS, Korea) and the National Research Foundation of Korea (NRF-2020R1A2C2009303) grant funded by the Korea government (MSIT).
References
- Castillo, G.A.L., Alava, L.A.C., Arauz, W.M.S., Rodriguez, J.A.P.: Proposal of photovoltaic system for house. Int. J. Phys. Sci. Eng. 4(2), 26-35 (2020)
- Kim, J., Cho, B.H.: Screening process-based modeling of the multi-cell battery string in series and parallel connections for high accuracy state-of-charge estimation. Energy 57, 581-599 (2013) https://doi.org/10.1016/j.energy.2013.04.050
- Dong, H., Huang, W., Zhao, Y.: Low complexity state-of-charge estimation for lithium-ion battery pack considering cell inconsistency. J. Power Sources 515, 230599 (2021)
- Guo, R., Lu, L., Ouyang, M., Feng, X.: Mechanism of the entire overdischarge process and overdischarge-induced internal short circuit in lithium-ion batteries. Sci. Rep. 6(1), 1-9 (2016) https://doi.org/10.1038/s41598-016-0001-8
- Zhang, C., Jiang, Y., Jiang, J., Cheng, G., Diao, W., Zhang, W.: Study on battery pack consistency evolutions and equilibrium diagnosis for serial-connected lithium-ion batteries. Appl. Energy 207, 510-519 (2017) https://doi.org/10.1016/j.apenergy.2017.05.176
- Martinez-Laserna, E., Gandiaga, I., Sarasketa-Zabala, E., Badeda, J., Stroe, D.I., Swierczynski, M., Goikoetxea, A.: Battery second life: hype, hope or reality? A critical review of the state of the art. Renew. Sustain. Energy Rev. 93, 701-718 (2018) https://doi.org/10.1016/j.rser.2018.04.035
- Chen, Y., Kang, Y., Zhao, Y., Wang, L., Liu, J., Li, Y., et al.: A review of lithium-ion battery safety concerns: the issues, strategies, and testing standards. J. Energy Chem. 59, 83-99 (2021) https://doi.org/10.1016/j.jechem.2020.10.017
- Park, S., Ahn, J., Kang, T., Park, S., Kim, Y., Cho, I., Kim, J.: Review of state-of-the-art battery state estimation technologies for battery management systems of stationary energy storage systems. J. Power Electron. 20(6), 1526-1540 (2020) https://doi.org/10.1007/s43236-020-00122-7
- Xiong, R., Cao, J., Yu, Q., He, H., Sun, F.: Critical review on the battery state of charge estimation methods for electric vehicles. IEEE Access 6, 1832-1843 (2017) https://doi.org/10.1109/access.2017.2780258
- Ng, K.S., Moo, C.S., Chen, Y.P., Hsieh, Y.C.: Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries. Appl. Energy 86(9), 1506-1511 (2009) https://doi.org/10.1016/j.apenergy.2008.11.021
- Zhao, L., Lin, M., Chen, Y.: Least-squares based coulomb counting method and its application for state-of-charge (SOC) estimation in electric vehicles. Int. J. Energy Res. 40(10), 1389-1399 (2016) https://doi.org/10.1002/er.3530
- Salkind, A.J., Fennie, C., Singh, P., Atwater, T., Reisner, D.E.: Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology. J. Power Sources 80(1-2), 293-300 (1999) https://doi.org/10.1016/S0378-7753(99)00079-8
- Shen, W.X., Chan, C.C., Lo, E.W.C., Chau, K.T.: A new battery available capacity indicator for electric vehicles using neural network. Energy Convers. Manag. 43(6), 817-826 (2002) https://doi.org/10.1016/S0196-8904(01)00078-4
- Hansen, T., Wang, C.J.: Support vector based battery state of charge estimator. J. Power Sources 141(2), 351-358 (2005) https://doi.org/10.1016/j.jpowsour.2004.09.020
- Plett, G.L.: Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: part 3. State and parameter estimation. J. Power Sources 134(2), 277-292 (2004) https://doi.org/10.1016/j.jpowsour.2004.02.033
- Pulavarthi, C., Kalpana, R., & Parthiban, P.: State of Charge estimation in lithium-ion battery using model based method in conjunction with extended and unscented Kalman filter. In 2020 International Conference on Power Electronics and Renewable Energy Applications (PEREA), pp. 1-6. IEEE, November, 2020
- Jokic, I., Zecevic, Z., & Krstajic, B.: State-of-charge estimation of lithium-ion batteries using extended Kalman filter and unscented Kalman filter. In 2018 23rd International Scientific-Professional Conference on Information Technology (IT), pp. 1-4, February, 2018
- Khanum, F., Louback, E., Duperly, F., Jenkins, C., Kollmeyer, P. J., & Emadi, A.: A Kalman filter based battery state of charge estimation MATLAB function. In 2021 IEEE Transportation Electrification Conference & Expo (ITEC), pp. 484-489, IEEE, June, 2021
- Pop, V., Bergveld, H.J., Regtien, P.P., Het Veld, J.O., Danilov, D., Notten, P.H.L.: Battery aging and its influence on the electromotive force. J Electrochem Soc 154(8), A744 (2007)
- Xiong, R., Pan, Y., Shen, W., Li, H., Sun, F.: Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives. Renew. Sustain. Energy Rev. 131, 110048 (2020)
- Kim, M., Kim, K., Kim, J., Yu, J., Han, S.: State of charge estimation for lithium ion battery based on reinforcement learning. IFAC PapersOnLine 51(28), 404-408 (2018) https://doi.org/10.1016/j.ifacol.2018.11.736
- You, G., Wang, X., Fang, C., Zhang, S., & Hou, X.: State of charge estimation of lithium-ion battery based on double deep Q network and extended Kalman filter. In IOP Conference Series: Earth and Environmental Science, Vol. 615, No. 1, pp. 012080. IOP Publishing, December, 2020
- Chui, C.K., Chen, G.: Extended Kalman filter and system identification. In: Kalman Filtering, pp. 115-137. Springer, Cham (2017)
- Gong, X., Xiong, R., Mi, C.C.: Study of the characteristics of battery packs in electric vehicles with parallel-connected lithium-ion battery cells. IEEE Trans. Ind. Appl. 51(2), 1872-1879 (2014) https://doi.org/10.1109/TIA.2014.2345951
- La, P.H., Choi, S.J.: Direct cell-to-cell equalizer for series battery string using switch-matrix single-capacitor equalizer and optimal pairing algorithm. IEEE Trans. Power Electron. 37(7), 8625-8639 (2022) https://doi.org/10.1109/TPEL.2022.3147842