DOI QR코드

DOI QR Code

Negative sequence control for DC voltage balancing in three-phase cascaded H-bridge rectifiers considering DC-port failures

  • Xinyu, Zhu (Institute of Aviation Electronic and Electrical Engineering, Civil Aviation Flight University of China) ;
  • Xiao, Liang (Institute of Aviation Electronic and Electrical Engineering, Civil Aviation Flight University of China) ;
  • Kaiyue, Gong (Institute of Aviation Electronic and Electrical Engineering, Civil Aviation Flight University of China) ;
  • Xu, Peng (Institute of Aviation Electronic and Electrical Engineering, Civil Aviation Flight University of China) ;
  • Jun, Cai (Institute of Aviation Electronic and Electrical Engineering, Civil Aviation Flight University of China) ;
  • Xiaohan, Liu (Institute of Aviation Electronic and Electrical Engineering, Civil Aviation Flight University of China) ;
  • Chao, Zhou (Institute of Aviation Electronic and Electrical Engineering, Civil Aviation Flight University of China) ;
  • Siqi, An (Institute of Aviation Electronic and Electrical Engineering, Civil Aviation Flight University of China) ;
  • Chao, Wu (School of Electronic Engineering and Automation, Luoyang Institute of Science and Technology) ;
  • Pengcheng, Han (School of Electronic Engineering and Automation, Luoyang Institute of Science and Technology)
  • Received : 2021.11.24
  • Accepted : 2022.07.20
  • Published : 2022.12.20

Abstract

As a vital component of power electronic transformers (PET), the reliability of a cascaded H-bridge rectifier (CHBR) is essential. Therefore, in this paper, a DC-port voltage balance strategy considering DC-port failure is researched to ensure the stable operation of a CHBR. However, if the DC-port voltage balance strategy is adopted to realize the single-phase balance of a CHBR, the three-phase currents become unbalanced. This paper uses a negative sequence control (NSC) strategy that is conducive to balancing DC-port voltage to achieve three-phase current balance. For the DC-port voltage balance, the matrix generation modulation (MGM) algorithm is proposed. In addition, the DC-port voltage balance boundary is analyzed to determine the range of the DC-port voltage balance in the CHBR. A 3-module cascading topology is adopted to demonstrate the MGM algorithm and the NSC strategy. Through experiments, results show the correctness and feasibility of the proposed strategy.

Keywords

Acknowledgement

This research was supported by Science and Technology Plan Program of Sichuan Grant Number 0272109, the program of CAFUC Grant Number ZX2021-03 and the Graduate Science and Technology Innovation Fund Project of CAFUC Grant Number X2021-11.

References

  1. Bifaretti, S., Zanchetta, P., Watson, A., et al.: Advanced power electronic conversion and control system for universal and flexible power management. IEEE Trans. Smart Grid 2(2), 231-243 (2011) https://doi.org/10.1109/TSG.2011.2115260
  2. Falcones, S., Ayyanar, R., Mao, X.: A DC-DC multiport-converter-based solid-state transformer integrating distributed generation and storage. IEEE Trans. Power Electron. 28(5), 2192-2203 (2013) https://doi.org/10.1109/TPEL.2012.2215965
  3. Gu, C., Zheng, Z., Xu, L., et al.: Modeling and control of a multiport power electronic transformer (PET) for electric traction applications. IEEE Trans. Power Electron. 31(2), 915-927 (2015) https://doi.org/10.1109/TPEL.2015.2416212
  4. Sandeep, K.C., Hiroyas, K., Keiichiro, K.: Design optimization of power electronic transformers in traction applications. IEEJ J. Ind. Appl. 9(6), 674-684 (2020) https://doi.org/10.1541/ieejjia.20002062
  5. Wang, D., Tian, J., Mao, C., et al.: A 10-kV/400-V 500-kVA electronic power transformer. IEEE Trans. Ind. Electron. 63(11), 6653-6663 (2016) https://doi.org/10.1109/TIE.2016.2586440
  6. Peng, X., Liu, X., Yang, G., et al.: Capacitors energy strategy based cascaded H-bridge converter for DC port failures. J. Power Electron. 19(5), 1133-1141 (2019) https://doi.org/10.6113/jpe.2019.19.5.1133
  7. Ye, M., Kang, L., Xiao, Y., et al.: A modified hybrid modulation strategy with power balance control for H-bridge hybrid cascaded seven-level inverter. IET Power Electron. 11(6), 1046-1054 (2018) https://doi.org/10.1049/iet-pel.2017.0558
  8. Bugel, K., Diong, B., Juleus, Q., et al.: Single-phase hybrid cascaded H-bridge and diode-clamped multilevel inverter: RL Load Case. In: 2018 9th IEEE International Symposium on Power Electronics for Distributed Generation Systems. Charlotte, America, IEEE, (2018)
  9. Lamb, J., Mirafzal, B., Blaabjerg, F.: PWM common mode reference generation for maximizing the linear modulation region of CHB converters in islanded microgrids. IEEE Trans. Ind. Electron. 65, 5250-5259 (2017) https://doi.org/10.1109/tie.2017.2777401
  10. Nami, A., Zare, F., Ghosh, A., et al.: A hybrid cascade converter topology with series-connected symmetrical and asymmetrical diode-clamped H-bridge cells. IEEE Trans. Power Electron. 26(1), 51-65 (2010) https://doi.org/10.1109/TPEL.2009.2031115
  11. Iman-Eini, H., Farhangi, S., Schanen, J.L., et al.: A modular power electronic transformer based on a cascaded H-bridge multilevel converter. Electr. Power Syst. Res. 79(12), 1625-1637 (2009) https://doi.org/10.1016/j.epsr.2009.06.010
  12. Shu, Z., Zhu, H., He, X., et al.: One-inductor-based auxiliary circuit for DC capacitor voltage equalisation of diode-clamped multilevel converter. IET Power Electron. 6(7), 1339-1349 (2013) https://doi.org/10.1049/iet-pel.2012.0242
  13. Dell'Aquila, A., Liserre, M., Monopoli, V.G., et al.: Overview of PI-based solutions for the control of DC buses of a single-phase H-bridge multilevel active rectifier. IEEE Trans. Ind. Appl. 44(3), 857-866 (2008) https://doi.org/10.1109/TIA.2008.921405
  14. Tiefu, Z., Gangyao, W., et al.: Voltage and power balance control for a cascaded H-bridge converter-based solid-state transformer. IEEE Trans. Power Electron. 28, 1523-1532 (2012) https://doi.org/10.1109/TPEL.2012.2216549
  15. He, X., Lin, X., Peng, X., et al.: Control strategy of single-phase three level neutral point clamped cascaded rectifier. Energies 10(5), 529 (2017)
  16. Peng, X., He, X., Han, P., et al.: Opposite vector based phase shift carrier space vector pulse width modulation for extending the voltage balance region in single-phase 3LNPC cascaded rectifier. IEEE Trans. Power Electron. 32(9), 7381-7393 (2017) https://doi.org/10.1109/TPEL.2016.2611607
  17. Moosavi, M., Farivar, G., Iman-Eini, H., et al.: A voltage balancing strategy with extended operating region for cascaded H-bridge converters. IEEE Trans. Power Electron. 29(9), 5044-5053 (2014) https://doi.org/10.1109/TPEL.2013.2286270
  18. She, X., Huang, A.Q., Wang, G.: 3-D space modulation with voltage balancing capability for a cascaded seven-level converter in a solid-state transformer. IEEE Trans. Power Electron. 26(12), 3778-3789 (2011) https://doi.org/10.1109/TPEL.2011.2142422
  19. Peng, X., He, X., Han, P., et al.: Sequence pulse modulation for voltage balance in a cascaded H-bridge rectifier. J. Power Electron. 17(3), 664-673 (2017) https://doi.org/10.6113/JPE.2017.17.3.664
  20. Peng, X., He, X., Han, P., et al.: Smooth switching technique for voltage balance management based on three-level neutral point clamped cascaded rectifier. Energies 9(10), 803 (2016)
  21. Deng, F., Chen, Z.: Voltage-balancing method for modular multilevel converters switched at grid frequency. IEEE Trans. Industr. Electron. 62(5), 2835-2847 (2015) https://doi.org/10.1109/TIE.2014.2362881
  22. Zhang, L., Qin, J., Zou, Y., et al.: Analysis of capacitor charging characteristics and low-frequency ripple mitigation by two new voltage-balancing strategies for MMC-based solid-state transformers. IEEE Trans. Power Electron. 36(1), 1004-1017 (2021) https://doi.org/10.1109/tpel.2020.3000717
  23. Qin, J., Saeedifard, M.: Reduced switching-frequency voltage-balancing strategies for modular multilevel HVDC converters. IEEE Trans. Power Delivery 28(4), 2403-2410 (2013) https://doi.org/10.1109/TPWRD.2013.2271615