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Abstract 

 
Due to increasing spectrum demand for new wireless devices applications, cooperative 
spectrum sensing (CSS) paradigm is the most promising solution to alleviate the spectrum 
shortage problem. However, in the interweave cognitive radio (CR) system, the inherent nature 
of CSS opens a hole to Byzantine attack, thereby resulting in a significant drop of the CSS 
security and efficiency. In view of this, a weighted differential sequential single symbol 
(WD3S) algorithm based on MATLAB platform is developed to accurately identify malicious 
users (MUs) and benefit useful sensing information from their malicious reports in this paper. 
In order to achieve this, a dynamic Byzantine attack model is proposed to describe malicious 
behaviors for MUs in an interweave CR system. On the basis of this, a method of data 
transmission consistency verification is formulated to evaluate the global decision’s 
correctness and update the trust value (TrV) of secondary users (SUs), thereby accurately 
identifying MUs. Then, we innovatively reuse malicious sensing information from MUs by 
the weight allocation scheme. In addition, considering a high spectrum usage of primary 
network, a sequential and differential reporting way based on a single symbol is also proposed 
in the process of the sensing information submission. Finally, under various Byzantine attack 
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types, we provide in-depth simulations to demonstrate the efficiency and security of the 
proposed WD3S. 
 
 
Keywords: Byzantine attack, cooperative spectrum sensing, security and efficiency, trust 
value, sequential and differential. 
 
 
 
 

1. Introduction 

Because of the rapid advances in wireless communication, there has been an increasing 
demand for the new wireless devices and applications in the electromagnetic spectrum. 
However, this increasing demand faces a great barrier which is the limitation of radio resources. 
According to the federal communications commission, underutilization of the frequency 
spectrum by primary users (PUs) either temporally or spatially is the main reason of the 
spectrum scarcity problem. To meet the growing need for spectrum availability, cognitive 
radio (CR) technology has been extensively proposed as the most promising solutions. 

In an interweave CR system, secondary users (SUs) make use of the local spectrum sensing 
(LSS) technology to opportunistically access the spectrum band allocated to the PU without 
causing excessive interference to the PU’s normal communication, thus solving the problem 
of spectrum scarcity [1]. In light of the fact that the accuracy of single-user spectrum sensing 
is always inadequate, cooperative spectrum sensing (CSS) paradigm is proposed to mitigate 
the negative effect of channel shadowing and fading [2]. In the collaborative framework, the 
fusion center (FC) gathers sensing information from SUs and then makes a global decision 
about the PU status based on a specific data fusion rule. 

However, the CSS paradigm opens a hole to malicious users (MUs) launching Byzantine 
attack. Through Byzantine attack, MUs send the falsified sensing information to mislead the 
FC into making an error global decision about the PU status and severely deteriorate the CR 
system’s performance. Therefore, devising a secure and efficient algorithm for CSS to protect 
the CR system from Byzantine attack becomes essential. 

1.1 Related Work 
Recently, prospective investigation addressing emerging and future challenges for secure and 
efficient CSS algorithm also has become a heated area of research. Y. Shei et al. applied 
sequential probability ratio test (SPRT) in [3] to optimize the reporting channel bandwidth and 
total sensing time in CSS. R. Chen et al. formulated a weighted sequential probability ratio 
test (WSPRT), in which the idea of the weight allocation was introduced in [4]. J. Wu et al. 
introduced a CSS for sequential 0/1 which is low-complexity under Byzantine attack and 
ensured the correctness of the global decision through the monitoring process of data 
transmission in [5]. Using the Kolmogorov-Smirnov test under the uncertainty of the channel 
and non-Gaussian noise, G. Zhang et al. proposed a method for fast, robust spectrum sensing 
in the CR system [6]. On the basis of SPRT, K. Haghighi et al. analyzed the exact spectrum 
sensing performance of time varying threshold sequential detectors in [7]. To improve the 
performance of CR receivers operating at low signal-to-noise ratio (SNR), H. Hsieh et al. 
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proposed a sequential test detector based on higher-order statistics for detecting underutilized 
spectrum in [8]. In [9], S. Mapunya and M. Velempini proposed an extreme studentized 
consensus CSS to combat the negative effect of greedy attacker. In [10], Y. Yilmaz et al. 
proposed a new framework for CSS in asynchronous states based on non-uniform sample and 
SPRT. These works basically take greedy attacker into account. In fact, from a safety point of 
view, the MU may conduct out various Byzantine attack behaviors according to the CSS 
paradigm. 

In another work, a suprathreshold stochastic resonance method was proposed to detect weak 
PU signals by artificially attaching noise resonance leading to signal enhancement by Q. Li 
and Z. Li in [11]. N. Marchang et al. proposed an intrusion detection scheme based on Markov 
chain model in [12]-[14]. [15] improved the performance of CSS in the case of low generalized 
SNR by using the maximum generalized correntropy. In [16], H. Chen suggested an attack-
proof CSS system using M-ary quantized data. After learning the approach of combining each 
single sensing result from the SU using a convolutional neural network and taking into account 
both the spectrum and spatial correlation of each sensing result, W. Lee et al. and 
colleagues employed training sensing samples to enhance the CSS performance in [17]. Using 
blockchain technology, Q. Wang et al. introduced a secure, decentralized, and novel multiparty 
learning system in [18]. P. Zhang et al. in [19] recast the CSS location estimation issue as a 
stochastic censoring model and developed the maximum likelihood estimate for the node's 
position. L. Zhang established a robust defense framework in [20], in which a reference is built 
on the basis of extended sensing. Though the above-mentioned state-of-the-art CSS schemes 
study complex Byzantine attack behaviors, most of them ignore the CSS efficiency. 

Different from the aforementioned works, K. Zeng introduced a reputation-based 
framework to identify misbehaviors in [21]. A trust value (TrV) based CSS algorithm for 
mobile SUs is proposed by X. Wang in [22], in which provides larger weighting coefficients 
for cells with preferable channel conditions. Both autonomous and distributed decision making 
are considered in [23], J. Wang and I. Chen separated the false sensing reports resulting from 
defective sensing capabilities from those caused by Byzantine attack, avoiding false penalties 
for honest users (HUs). J. Wu et al. in [24] proposed a novel CSS scheme in which the SU’s 
TrV is updated after each sensing based on the delivery-based assessment, solving the FC’s 
unreliability. In [25], a novel empirical analysis under a probabilistic Byzantine attack was 
performed by A. Sivakumaran et al., where a decentralized CR network is simulated using the 
Neyman-Pearson (N-P) algorithm for CSS. Apparently, the above CSS schemes design a TrV 
update mechanism to allocate weight of SUs’ sensing results and restricts SUs who are 
considered to be malicious from participating in CSS, thereby directly eliminating them from 
the network. However, the FC may utilize the sensing data from those rational MUs to make 
a more accurate global decision. Otherwise, J. Wang et al. proposed a lightweight blockchain-
based secure routing algorithm for swarm unmanned aircraft system networking in [26], and 
formulated a blockchain-based approach to mitigate the threats from accessing the malicious 
base stations in [27]. Further, the authors provided a holistic framework for the quickest and 
sequential detection of abnormalities and time-dependent abnormal events in internet of things 
in [28]. But these works focus more on the efficiency and security of decentralized routing 
algorithm or abnormal detection in unmanned aircraft system networks or internet of things. 

In view of above reviews, [12]-[15] ignore the blind scenario of FC when the proportion of 
MUs increases to a certain extent, [16]-[18] do not exploit MUs’ reports to improve CSS 
performance, [19]-[21] do not use novel reporting way to reduce communication overhead, 
[22]-[23] do not propose the dynamic Byzantine attack model, so the requirement naturally 
remains a big challenge to present an efficient and secure CSS, especially in the face of a 
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dynamic Byzantine attack. Therefore, we will focus more on improving the efficiency and 
security of the CSS model at the same time, using data transmission consistency verification, 
weight allocation and novel reporting way to improve the performance of CSS. 

1.2 Our Contributions 
This paper survey a series of studies on the efficiency and performance of CSS under 
Byzantine attack. Following these works, we formulate a dynamic Byzantine attack model 
from a malicious viewpoint, and on the basis of this, we also propose a secure and efficient 
weighted differential sequential single symbol (WD3S) and further evaluate the cooperative 
performance and efficiency for a series of data fusion technologies for CSS. We summarize 
our contributions as five-fold:  

 (a) From the MU’s viewpoint, we propose a dynamic Byzantine attack model to exactly 
describe Byzantine behaviors in an interweave CR system. In the proposed attack model, the 
MU flexibly develops out various attack strategies from a series of generalized attack mode;  

(b) Considering that the FC’s global decision may be compromised by a large number of 
MUs, we use the data transmission status to update each SU’s TrV in the spectrum sensing 
frame instead of the global decision;  

 (c) Following the data transmission consistency verification, we separate the sensing 
information useful from the sensing results of MUs so as to make a more accurate global 
decision. In addition, honest users (HUs) may also be mistaken for MUs. Therefore, unlike 
previous works, MUs are not directly removed from the system;  

(d) To improve the reporting efficiency, we integrate the differential and sequential idea 
into the reporting channel to reduce the samples the FC required and improve cooperative 
efficiency; Further, we also perform an in-depth analysis on the cooperative performance and 
efficiency of the proposed WD3S and classical data fusion technologies. 

1.3 Organization 
The rest of this paper is organized as follows. Section 2 proposes the spectrum sensing and 
Byzantine attack model in an interweave CR system. In Section 3, some classical the state-of-
art technologies and recent advances in data fusion for CSS are reviewed. Further, motivated 
by disadvantages of the existing data fusion technologies, WD3S is proposed. In Section 4, 
the performance and efficiency of WS3S are conducted an in-depth analysis. The simulation 
results of the performance and efficiency comparison are shown in Section 5. Section 6 is the 
conclusion of this paper. 

2. System Model 
In this section, an energy detection-based spectrum sensing model in an interweave CR system 
is introduced. Following the spectrum sensing model, we combine malicious behaviors from 
MUs into CSS to conduct a dynamic Byzantine attack model. 

2.1 Spectrum Sensing Model 
We assume that a centralized interweave CR system consists of a PU, a FC and 𝑁𝑁 SUs 
(including HUs and MUs, and the MU ratio is 𝜌𝜌). The considered CSS model is shown in 
Fig. 1. It is known that each frame consists of a sensing slot, a reporting slot, and a data 
transmission slot in an interweave CR system. At the sensing slot, each SU individually 
detects the PU signal by means of LSS technology. Among these LSS techniques (i.e., 
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energy detection, wavelet detection, cyclostationary feature detection, and matched filter 
detection etc.), we adopt the energy detection to detect the PU because there is no a priori 
knowledge about the primary signal and a low implementation cost. Therefore, following 
energy detection, the spectrum sensing is regarded as a binary hypothesis test problem, 
i.e., 𝐻𝐻0 and 𝐻𝐻1 represent the hypothesis on the absence and presence of the PU signal, 
respectively. Assuming that 𝑠𝑠𝑖𝑖(𝑡𝑡) and 𝑢𝑢𝑖𝑖(𝑡𝑡) are denoted by the PU’s signal and additive 
white gaussian noise (AWGN) at the 𝑖𝑖-th SU, respectively, the signal received by the 𝑖𝑖-th 
SU can be expressed as [29] 

𝑦𝑦𝑖𝑖(𝑡𝑡) = �𝑢𝑢𝑖𝑖
(𝑡𝑡),                 𝐻𝐻0

𝑠𝑠𝑖𝑖(𝑡𝑡) + 𝑢𝑢𝑖𝑖(𝑡𝑡),   𝐻𝐻1
                                                 (1) 

According to (1), at the 𝑘𝑘-th sensing frame, the test statistic at the energy detector is 
given by 

𝐸𝐸𝑖𝑖(𝑘𝑘) = �|𝑦𝑦𝑖𝑖 �( �𝑡𝑡�)|2
𝑆𝑆

𝑡𝑡=1

                                                         (2) 

where 𝑆𝑆  is the sampling number. For a large 𝑆𝑆 , using the central limit theorem, the 
probability density function of the test statistic 𝐸𝐸𝑖𝑖(𝑘𝑘) can be approximated by Gaussian 
distribution as 

𝐸𝐸𝑖𝑖(𝑘𝑘)~ �
𝒩𝒩(𝑆𝑆�𝜎𝜎𝑢𝑢2�,�2 �𝑆𝑆�𝜎𝜎𝑢𝑢4),                          𝐻𝐻0
𝒩𝒩(𝑆𝑆�( �𝛾𝛾�+ �1 �) �𝜎𝜎𝑢𝑢2�, �2 �𝑆𝑆�( �𝛾𝛾�+ �1 �)2�𝜎𝜎𝑢𝑢4), 𝐻𝐻1

                                 (3) 

where 𝜎𝜎𝑠𝑠2 and 𝜎𝜎𝑢𝑢2 are signal variance and noise variance, 𝛾𝛾 = 𝜎𝜎𝑠𝑠2/𝜎𝜎𝑢𝑢2 is SNR of the PU 
signal received at the 𝑖𝑖-th SU. Therefore, according to [30], the local spectrum sensing 
performance of the 𝑖𝑖-th SU, i.e., the false alarm probability and the detection probability 
which can be respectively given by 

𝑃𝑃𝑓𝑓,𝑖𝑖 = 𝑄𝑄 �
𝜆𝜆 − 𝑆𝑆𝜎𝜎𝑢𝑢2

�2𝑆𝑆𝜎𝜎𝑢𝑢4
�                                                               (4) 

𝑃𝑃𝑑𝑑,𝑖𝑖 = 𝑄𝑄 �
𝜆𝜆 − 𝑆𝑆(𝛾𝛾 + 1)𝜎𝜎𝑢𝑢2

�2𝑆𝑆(𝛾𝛾 + 1)2𝜎𝜎𝑢𝑢4
�                                                 (5) 

where 𝑄𝑄(·) is the complementary distribution function of the standard Gaussian, and 𝜆𝜆  is 
the detection threshold. Otherwise, the miss detection probability 𝑃𝑃𝑚𝑚,𝑖𝑖 = 1 − 𝑃𝑃𝑑𝑑,𝑖𝑖. 

U

 

 
Fig. 1. The centralized interweaved-based CR system. 

2.2 Dynamic Byzantine Attack Model 
Due to the inherent nature (i.e., multipath fading and shadowing) of wireless channel, LSS 
performed by the individual SU is often in error, CSS has been proposed to exploit the multi-
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user spatial diversity. However, the open nature of the underlying protocol stack of the CR 
system makes CSS suffer from Byzantine attack by MUs who can cause serious damage to the 
reliability of CSS by falsifying the sensing results. 

Before delving into the intricacies of Byzantine attack, we introduce a specific type of attack, 
i.e., always attack. In an always attack, the MU always submits a falsified sensing result to the 
FC after LSS is implemented, i.e., always yes (AY), always no (AN), and always false (AF). 
That is to say, regardless of the sensing result, the MU always submits 1, 0 or the opposite 
result. The always attack model is commonly adopted by many Byzantine identification and 
suppression algorithms, but prone to be identified and removed from CR system. Apparently, 
a more covert and safe attack model is in line with the intentions of MUs. Motivated by this, 
we design a probabilistic attack instead of always attack to model a dynamic Byzantine attack. 

Depending on the cooperative sensing framework, each SU makes a binary decision about 
the PU status at the sensing slot, i.e., 𝐻𝐻0 or 𝐻𝐻1, and further submits 𝐻𝐻0 or 𝐻𝐻1 to the FC at the 
error-free reporting slot. However, the MU may falsify the sensing result and submits it to the 
FC. For example, the MU falsifies the sensing result 𝑆𝑆𝑖𝑖 = 𝐻𝐻0 into the reporting result 𝑅𝑅𝑖𝑖 = 𝐻𝐻1 
with a probability 𝛼𝛼0,𝑖𝑖 or falsifies the sensing result 𝑆𝑆𝑖𝑖 = 𝐻𝐻1 into 𝑅𝑅𝑖𝑖 = 𝐻𝐻0 with a probability 
𝛼𝛼1,𝑖𝑖, as shown in Fig. 2. A pair of attack probabilities can be expressed as 

�
𝛼𝛼0,𝑖𝑖 = 𝑃𝑃(𝑅𝑅𝑖𝑖 = 𝐻𝐻1|𝑆𝑆𝑖𝑖 = 𝐻𝐻0)
𝛼𝛼1,𝑖𝑖 = 𝑃𝑃(𝑅𝑅𝑖𝑖 = 𝐻𝐻0|𝑆𝑆𝑖𝑖 = 𝐻𝐻1)                                                   (6) 

 
Fig. 2.  Dynamic Byzantine attack model. 

 
In the Bayesian testing framework, if the received data cannot convey any information about 

the hypothesis test to the FC, it is called blind. That is to say, the reporting results received by 
the FC and the hypothesis test are independent. Thus, the condition making the FC blind can 
be expressed as 𝑃𝑃(𝑹𝑹 ∣ 𝐻𝐻0) = 𝑃𝑃(𝑹𝑹 ∣ 𝐻𝐻1), where 𝑹𝑹 = [𝑅𝑅1,𝑅𝑅2,𝑅𝑅3 …𝑅𝑅𝑁𝑁] is the reporting vector 
received by the FC. Considering that each SU’s sensing observation is subject to conditional 
independent and identically distribution. The false alarm probability and miss detection 
probability are assumed to be the same for every SU irrespective of whether they are reliable 
or not malicious, denoted by 𝑃𝑃𝑓𝑓  and 𝑃𝑃𝑚𝑚 , respectively. Each MU adopts the same attack 
probability, i.e., 𝛼𝛼0,𝑖𝑖 = 𝛼𝛼0  and 𝛼𝛼1,𝑖𝑖 = 𝛼𝛼1 . Therefore, the blind condition of 𝑃𝑃(𝑹𝑹 ∣ 𝐻𝐻0) =
𝑃𝑃(𝑹𝑹 ∣ 𝐻𝐻1)  can be expressed as 𝜌𝜌 �𝛼𝛼0�𝑃𝑃𝑓𝑓 + 𝑃𝑃𝑚𝑚 − 1� + (1 − 𝛼𝛼1)�1 − 𝑃𝑃𝑓𝑓 − 𝑃𝑃𝑚𝑚��+ (1 −
𝜌𝜌)�1 − 𝑃𝑃𝑓𝑓 − 𝑃𝑃𝑚𝑚� = 0. After simple algebraic operations, we have 𝜌𝜌 = 1 (𝛼𝛼 + 𝛽𝛽)⁄  [5]. It can 
be seen that when 𝛼𝛼 = 𝛽𝛽 = 1, the condition for making the FC blind is that the proportion of 
MUs to the total users reaches 0.5, which is the minimum proportion can blind the FC. Clearly, 
the small proportion of MUs and the always attack strategy allow many studies to circumvent 
the blind problem. 
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3. WD3S FOR CSS 
Based on Byzantine attack and spectrum sensing model, we make a brief presentation of 
existing data fusion techniques, including hypothesis test, voting rule, and evolutionary 
variant. In view of a thorough review of advantages and disadvantages of these data fusion 
techniques, we propose a secure and efficient WD3S to defend against Byzantine attack, 
in which consists of data transmission consistency verification, weight allocation, and 
reporting way. 

3.1 Data Fusion Technique 
Considering the threat of Byzantine attack to the CR system, there are various data fusion 
techniques that have been proposed in existing works to suppress Byzantine attack and 
are also commonly categorized as hypothesis test and voting rule, and evolutionary variant 
[31]. 

3.1.1 Voting Rule 
It is known that the voting rule (a.k.a. 𝐾𝐾-out-of-𝑁𝑁 rule or decision rule) is the simplest 
data fusion technique to make the global decision [32], in which if more than 𝐾𝐾  SUs 
among 𝑁𝑁 SUs decides that the PU is present, then the FC declares that the PU is present 
and vice versa. Additionally, the voting rule also involves three commonly used rules, i.e., 
And rule, Or-rule and Majority-rule, further we have the following descriptions. 

(a) And rule: Only when all SUs decide that the PU is present, the FC finally determines 
that it is true, otherwise the PU is absence, that is, unless ∑ 𝑅𝑅𝑖𝑖𝑁𝑁

𝑖𝑖=1 = 𝑁𝑁, the FC accepts 𝐻𝐻1, 
otherwise accepts 𝐻𝐻0. It is obvious that both of the detection probability and the false 
alarm probability for And rule are low. 

(b) Or rule: If no less than one SU declares that the PU is present, the FC concludes that 
the PU is present, i.e., the FC accepts 𝐻𝐻1 if ∑ 𝑅𝑅𝑖𝑖𝑁𝑁

𝑖𝑖=1 ≥ 1, otherwise accepts 𝐻𝐻0. It is easily 
observed that the detection probability and the false alarm probability for Or rule are high. 

(c) Majority rule: In addition to And and Or rule, Majority rule is the commonly adopted 
for the global decision making, in which the FC announces that the PU is present when 
more than half of SUs decide that the PU is present, the FC accepts 𝐻𝐻1 when  ∑ 𝑅𝑅𝑖𝑖𝑁𝑁

𝑖𝑖=1 ≥
⌈𝑁𝑁 2⁄ ⌉. 

Besides, the decision threshold 𝐾𝐾 is usually used as a random variable in the voting rule 
to realize the performance optimization of CSS because the voting rule does not require 
some a-priori information about the probability distribution of primary signal or 
Byzantine. 

3.1.2 Hypothesis Test 
Unlike the simple voting rule, the implementation of hypothesis test requires a prior 
information, such as, the conditional densities 𝑃𝑃(𝐻𝐻𝜗𝜗�∣�𝐻𝐻𝜃𝜃) under the two hypotheses where 
𝜗𝜗,𝜃𝜃 = 0,1 , and a priori probabilities of the two hypotheses 𝑃𝑃(𝐻𝐻𝜃𝜃) . Three classical 
hypothesis tests (i.e., Bayesian detection, N-P test, and SPRT [33]) are reviewed as follows: 

(a) Bayesian detection: Bayesian detection assigns each of these possibilities to a 
specific cost and minimize the average cost, such as, 𝐶𝐶𝜗𝜗𝜗𝜗 represents the cost of declaring 
𝐻𝐻𝜗𝜗 when 𝐻𝐻𝜃𝜃 is true. The Bayes risk function or average cost 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎 is given by [33] 
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𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎 = ��𝐶𝐶𝜗𝜗𝜗𝜗

1

𝜃𝜃=0

1

𝜗𝜗=0

𝑃𝑃(𝑅𝑅𝑖𝑖 = 𝐻𝐻𝜃𝜃)𝑃𝑃(𝐻𝐻𝜗𝜗�∣�𝐻𝐻𝜃𝜃)                             (7) 

Then, Bayesian detection’s likelihood ratio test (LRT) can be described as 

�
𝑃𝑃(𝑅𝑅𝑖𝑖 �∣�𝐻𝐻1)
𝑃𝑃(𝑅𝑅𝑖𝑖 �∣�𝐻𝐻0)

𝑁𝑁

𝑖𝑖=1

>
<
𝐻𝐻0

𝐻𝐻1
𝑃𝑃(𝐻𝐻0)(𝐶𝐶10�−�𝐶𝐶00)
𝑃𝑃(𝐻𝐻1)(𝐶𝐶01�−�𝐶𝐶11)                                      (8) 

where the right-hand side can be regarded as the threshold 𝜆𝜆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 of Bayesian detection. 
If LRT is greater than 𝜆𝜆𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏, 𝐻𝐻1 is accepted and vice versa.  

(b) N-P test: To ensure that the false alarm probability is lower than an acceptable value 
of 𝜆𝜆𝑛𝑛𝑛𝑛  and maximize the detection probability, the N-P test’s goal is to design a 
nonrandomized test. If LRT is greater than 𝜆𝜆𝑛𝑛𝑛𝑛, 𝐻𝐻1 is accepted and vice versa, then LRT 
of N-P test is described as 

�
𝑃𝑃(𝑅𝑅𝑖𝑖 �∣�𝐻𝐻1)
𝑃𝑃(𝑅𝑅𝑖𝑖 �∣�𝐻𝐻0)

𝑁𝑁

𝑖𝑖=1

>
<
𝐻𝐻0

𝐻𝐻1

𝜆𝜆𝑛𝑛𝑛𝑛                                                    (9) 

From (8) and (9), it can be seen that N-P test and Bayesian detection both use a fixed 
number of samples, but the difference of them is the way of the threshold selection [32]. 

(c) SPRT: Different from the methodology of N-P test and Bayesian detection, the 
sensing results are processed sequentially and then SPRT makes a global decision when 
the cooperative performance are satisfied. In the sequential process, the FC computes LRT 
after each sensing result as 

𝑊𝑊𝑙𝑙 = �
𝑃𝑃(𝑅𝑅𝑖𝑖�∣�𝐻𝐻1)
𝑃𝑃(𝑅𝑅𝑖𝑖�∣�𝐻𝐻0)

𝑙𝑙

𝑖𝑖=1

                                                    (10) 

and compares it with a lower and upper threshold, where 𝜂𝜂𝑙𝑙 =  𝑃𝑃�𝑚𝑚 �1 − 𝑃𝑃�𝑓𝑓��  and 𝜂𝜂ℎ =
 (1 − 𝑃𝑃�𝑚𝑚) 𝑃𝑃�𝑓𝑓�  , 𝑃𝑃�𝑚𝑚  and 𝑃𝑃�𝑓𝑓  are the tolerated miss detection and false alarm probability, 
respectively. During the CSS process, the FC will make a global decision or take another 
sensing result, such as (a) 𝑊𝑊𝑙𝑙 ≤ 𝜂𝜂𝑙𝑙, the FC accepts 𝐻𝐻0; (b) 𝑊𝑊𝑙𝑙 ≥ 𝜂𝜂ℎ, the FC accepts 𝐻𝐻1; 
(c) 𝜂𝜂𝑙𝑙 < 𝑊𝑊𝑙𝑙 < 𝜂𝜂ℎ, the FC takes another sensing result. 

Compared to approaches that need a fixed number of samples, such as N-P test and 
Bayesian detection, SPRT can achieve the same cooperative performance with fewer 
samples on an average [33]. 

3.1.3 Evolutionary Variant 
In addition to the traditional hypothesis test and voting rule, there are a variety of data 
fusion technologies evolved from hypothesis test and voting rule to implement CSS. 

(a) WSPRT: Motivated by the weight idea, WSPRT integrates the reputation-based 
mechanism into SPRT to realize CSS. Compared to the hypothesis test and voting rule, 
WSPRT provides a certain degree of CSS security under Byzantine attack. In details, the 
global decision is used as the consistency verification to evaluate the sensing result, then 
the SU’s TrV can be expressed as 

𝑇𝑇𝑇𝑇𝑣𝑣𝑖𝑖(𝑘𝑘) = 𝑇𝑇𝑇𝑇𝑣𝑣𝑖𝑖(𝑘𝑘�−�1) + (−�1)𝑅𝑅𝑖𝑖(𝑘𝑘)+𝑔𝑔(𝑘𝑘)                                  (11) 
where 𝑔𝑔(𝑘𝑘)  is the 𝑘𝑘 -th sensing slot’s global decision. According to the SU’s TrV, the 
weight can be expressed as 



3746                                                                               Wu et al.: Secure and Efficient Cooperative Spectrum Sensing  
Against Byzantine Attack for Interweave Cognitive Radio System 

𝑤𝑤𝑖𝑖(𝑘𝑘) = �
0,                                 𝑇𝑇𝑇𝑇𝑣𝑣𝑖𝑖(𝑘𝑘) ≤ −𝑔𝑔
𝑇𝑇𝑇𝑇𝑣𝑣𝑖𝑖(𝑘𝑘) + 𝑔𝑔

max�𝑇𝑇𝑇𝑇𝑣𝑣𝑖𝑖(𝑘𝑘)� + 𝑔𝑔
,𝑇𝑇𝑇𝑇𝑣𝑣𝑖𝑖(𝑘𝑘) > −𝑔𝑔                              (12) 

where 𝑔𝑔 is the pre-setting value, 𝑇𝑇𝑇𝑇𝑇𝑇(𝑘𝑘) represents the TrV vector for all SUs at the 𝑘𝑘-th 
sensing slot. 

When the SU’s weight is integrated into likelihood ratio, WSPRT at the 𝑘𝑘-th sensing 
slot can be described as 

𝑊𝑊𝑙𝑙(𝑘𝑘) = ��
𝑃𝑃(𝑅𝑅𝑖𝑖�∣�𝐻𝐻1)
𝑃𝑃(𝑅𝑅𝑖𝑖�∣�𝐻𝐻0)�

𝑤𝑤𝑖𝑖(𝑘𝑘)𝑙𝑙

𝑖𝑖=1

                                       (13) 

Sequentially, 𝑊𝑊𝑙𝑙(𝑘𝑘)  is compared with a pair of decision thresholds 𝜂𝜂𝑙𝑙  and 𝜂𝜂ℎ  to 
conduct a global decision. 

(b) Advance voting rule: On the basis of a generalized voting (GV) rule and sequential 
idea of SPRT, there are a variety of derivative voting rules, such as single symbol voting 
(S2V) rule [5], sequential single symbol voting (S3V) rule [34]. Since the PU is usually 
located in urban/suburban areas, the channel is at high/low usage, each SU is only required 
to submit a binary sensing result in S2V and S3V. Unlike S2V, all binary sensing results 
are sequentially arrived at the FC in S3V. In the end, both S2V and S3V must meet the 
decision condition, but the decision way of S3V’s can be described as ∑ 𝑅𝑅𝑖𝑖𝑙𝑙

𝑖𝑖=1 ≥ 𝐾𝐾. 

3.2 Problem Analysis 
In front of Byzantine attack, the security and efficiency of CSS cannot be guaranteed in 
above-mentioned data fusion techniques at the same time. The previous work suffers from 
the following three problems: 

(a) The previous Byzantine identification and suppression algorithms make use of the 
FC’s global decision to update each SU’s TrV, but the FC is prone to be compromised by 
Byzantine attack, resulting in a fact that MUs cannot be identified at this time. 

(b) The weight allocation in the previous work is also prone to misidentify reliable SUs 
as MUs because reliable users may also be affected by shadowing and fading. Moreover, 
if the proportion of MUs increases to a certain extent, malicious identification strategies 
will restrict their participation in cooperation and significantly reduce the benefits of CSS. 

(c) The previous work fails in considering the reporting way. The traditional reporting 
way in a large-scale CR system necessitates a lot of communication resources, which 
decreases the available cooperative gain and then results in a low cooperative efficiency. 

Confronting the above problems of CSS in the presence of Byzantine attack, the 
following aspects need to be carefully taken into consideration before suppressing 
Byzantine attack and improving CSS performance and efficiency. The reliability of the 
global decision made by the FC or the measurement of the reporting results by means of 
the third party or mechanism should be guaranteed in a hostile sensing environment, with 
the aim of accurately distinguishing MUs and HUs. On the basis of (a), a weight allocation 
should be carefully designed to not only realize the suppression of Byzantine attack, but 
also maximize the cooperative gain of HUs. Since a large amount of sensing results will 
be submitted from each SU to the FC in an instant, at this time, the reporting way is 
implemented in the reporting channel. Therefore, an efficient reporting way is beneficial 
for SUs to quickly finish the PU detection and achieve more throughput. Through above 
analyses, we will propose WD3S to overcome problems mentioned above in the following 
section. 
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3.3 WD3S 
In this section, we make use of the WSPRT framework to conduct WD3S, which consists 
of the data transmission consistency verification, the weight allocation, and the reporting 
way. 

3.3.1 Data Transmission Consistency Verification 
Data transmission consistency verification is one of the key components of our framework. 
In existing Byzantine identification and suppression algorithms, the global decision is not 
only a basis for SUs to access the channel but is used as a consistency verification of the 
local sensing results to update the SU’s TrV as well. As shown in Fig. 3, by means of a 
specific fusion rule, the FC makes a global decision about the PU status according to the 
received sensing results after the sensing slot and reporting slot. When the FC declares 
that the PU is absent, i.e., 𝐻𝐻0, the FC allows SUs to access the channel according to a 
specific resource allocation algorithm at the transmission slot. When the FC announces 
that the PU is present, i.e., 𝐻𝐻1, the FC denies SUs to access to the channel and then all 
SUs need to continue sensing at the next frame. Through a brief description of the CSS 
process, it can be seen that the global decision is prone to be distorted by Byzantine attack. 
At this time, verifying the consistency of the local sensing results and updating the SU’s 
TrV through the global decision is obviously unreliable. Therefore, the consistency 
verification should be carefully considered. 

1H

0H
 

  

  

 
Fig. 3. The CSS frame structure. 

 
A SU’s ability to access the channel at the conclusion of its reporting time is determined 

solely by a global decision. But when the FC’s global decision 𝑔𝑔(𝑘𝑘) = 𝐻𝐻0 is incorrect (the 
PU is actually present), SUs may access the channel, resulting in harmful interference at 
the channel; the FC’s global decision 𝑔𝑔(𝑘𝑘) = 𝐻𝐻1 is incorrect (the PU is actually absent), 
neither the SU nor the PU will access the channel, the channel is not transmitting any data. 
It can be seen from these two aspects that the FC can distinguish the global decision’s 
correctness by monitoring the data transmission on the channel, which can then be used 
to verify the consistency of the local sensing results and upgrade the SU’s TrV. More 
importantly, the monitoring process of data transmission implemented by the FC is not 
affected by Byzantine attack strategy. 

Based on the data transmission consistency verification, the SU’s TrV can be expressed 
as 

𝑇𝑇𝑇𝑇𝑣𝑣𝑖𝑖(𝑘𝑘) = 𝑇𝑇𝑇𝑇𝑣𝑣𝑖𝑖(𝑘𝑘�−�1) + (−�1)𝑅𝑅𝑖𝑖(𝑘𝑘)+𝑑𝑑(𝑘𝑘)                               (14) 
where 𝑑𝑑(𝑘𝑘)  is the PU channel status obtained by the data transmission consistency 
verification after the 𝑘𝑘-th sensing slot. 
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3.3.2 Weight Allocation 
The next thing comes into consideration is how to design the weight allocation of 
likelihood ratio. Generally speaking, the weight of current sensing result is linked to the 
accuracy of historical sensing results. However, the accuracy evaluation of the historical 
sensing results depends on the global decision’s accuracy. In a hostile environment, many 
works only take a simple Byzantine attack strategy, i.e., always attack or a small number 
of MUs, thereby MUs are easily identified in these scenarios and the global decision is 
still reliable. Considering the generality of the research and the robustness of the defense 
strategy, we adopt the data transmission consistency verification to conduct an accurate 
weight allocation for each SU’s likelihood ratio. To this end, we take the following 
analyses about Byzantine attack into account as follows: 

(a) According to the proposed attack model, two kinds of Byzantine attacks including 
miss detection attack and false alarm attack make the various negative impact on CSS. 
The false alarm attack can prevent HUs from using the underutilized channel so that MUs 
selfishly occupy it, while the miss detection attack will allure SUs to access the channel 
being utilized and cause excessive interference to the PU. Considering the influence of 
these two aspects, it is indispensable for the FC to accurately distinguish two kinds of 
Byzantine attacks, we define two decision abilities to describe the performance indicators 
of a SU according to the historical sensing results, such as, the ability of accurately 
detecting the PU’s presence and absence. Then, after 𝑘𝑘 sensing intervals, a pair of decision 
abilities of the 𝑖𝑖-th SU can be defined as 

𝐽𝐽𝑖𝑖𝜃𝜃(𝑘𝑘) = 𝑇𝑇𝑖𝑖𝜃𝜃(𝑘𝑘) 𝑇𝑇𝜃𝜃(𝑘𝑘)�                                                   (15) 
where 𝑇𝑇𝑖𝑖𝜃𝜃(𝑘𝑘) represents the number of detecting the PU status 𝜃𝜃 and 𝑇𝑇𝜃𝜃(𝑘𝑘) is the number 
of the PU status 𝜃𝜃.  

(b) The useful information for making an accurate global decision may also be 
conveyed by the MUs’ sensing results, and should not be eliminated from CSS process 
immediately. In fact, for the sake of its own security, MUs may sometimes launch 
Byzantine attack according to the proposed attack model and sometimes normally 
participate in CSS. If the FC arbitrarily eliminates MUs [35][36], Byzantine attack 
behaviors from MUs will be suppressed but HUs’ spectrum sensing behaviors will be 
discouraged. To be specific, malicious sensing results are easily distinguished in some 
extreme cases, i.e., always attack, then the FC can benefit useful information from it to 
make the global decision. In details, a specific case for the decision abilities is considered, 
i.e., always attack. When a MU launches AY or AN attack, there is no doubt that 𝐽𝐽𝑖𝑖𝜃𝜃(𝑘𝑘) is 
approximate to 0, that is to say, the received result at the FC is flipped at this time and the 
result 1 − 𝜃𝜃  is more reliable. Inspires by the above considerations, we propose a new 
weight allocation method, in which MUs will never be eliminated, and may be reused. 

According to the above analyses about Byzantine attack, the weight allocation 𝑤𝑤𝑖𝑖𝜃𝜃(𝑘𝑘) 
can be expressed as 

𝑤𝑤𝑖𝑖𝜃𝜃(𝑘𝑘) = �
1 − 𝐽𝐽𝑖𝑖𝜃𝜃(𝑘𝑘),            𝐽𝐽𝑖𝑖𝜃𝜃(𝑘𝑘) ≤ 𝛿𝛿𝑙𝑙
𝐽𝐽𝑖𝑖𝜃𝜃(𝑘𝑘),                   𝐽𝐽𝑖𝑖𝜃𝜃(𝑘𝑘) ≥ 𝛿𝛿ℎ
0, takes next senisng result

                                 (16) 

where 𝛿𝛿𝑙𝑙  and 𝛿𝛿ℎ are the threshold of the lower and upper decision ability. When the SU’s 
decision ability is high, the decision ability is regarded as the weight to integrated into the 
likelihood ratio. When the SU’s decision ability is low, the sensing result is flipped by 1 −
𝐽𝐽𝑖𝑖𝜃𝜃(𝑘𝑘) at the calculation of the likelihood ratio. Furthermore, the sensing result will not be 
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computed into the likelihood ratio if the decision ability is between 𝛿𝛿𝑙𝑙  and 𝛿𝛿ℎ. By this way, 
the FC can benefit from always attack and reduce the detrimental impact of other kinds of 
Byzantine attack. 

Finally, the decision variable 𝑊𝑊𝑙𝑙(𝑘𝑘) is calculated as 

𝑊𝑊𝑙𝑙(𝑘𝑘) = ��
𝑃𝑃(𝑅𝑅𝑖𝑖�∣�𝐻𝐻1)
𝑃𝑃(𝑅𝑅𝑖𝑖�∣�𝐻𝐻0)�

𝑤𝑤𝑖𝑖
𝜃𝜃(𝑘𝑘)𝑙𝑙

𝑖𝑖=1

                                     (17) 

3.3.3 Reporting Way 
Based on the data transmission consistency verification and weight allocation, 
theoretically, the negative effect of Byzantine attack can be mitigated and the CSS 
performance is also guaranteed, but the randomness of the likelihood ratio calculation 
process in SPRT remains a great barrier to CSS efficiency. In view of this, we further 
integrate the sequential idea and differential mechanism into the reporting way of SPRT, 
which can be described as follows: 

(a) The sequential concept is extracted from the SPRT process, and its main idea is that 
the sensing results are collected in a sequential manner, and as time continues, more 
sensing information becomes available [32]. Then, the FC will process the sensing results 
sequentially as soon as the global decision is made, thereby resulting in degradation of 
sensing results required. Although the sequential idea has certain advantages over GV and 
traditional hypothesis test, it has no advantage in cooperative efficiency compared to 
SPRT and WSPRT. The mechanism for improving the cooperative efficiency needs further 
consideration.  

(b) Based on the sequential idea, we make use of the differential mechanism to lessen 
the FC’s need for a large number of sensing results. In details, when the previous and 
current sensing interval’s sensing results are consistent for the 𝑖𝑖-th SU, the current sensing 
result of the SU does not need to be submitted to the FC, and the FC automatically regards 
the current sensing result as the same as the sensing result of the previous sensing results. 
Assuming that 𝑅𝑅𝑖𝑖(𝑘𝑘) is the sensing result of the 𝑖𝑖-th SU at the 𝑘𝑘-th sensing interval, if 
both 𝑅𝑅𝑖𝑖(𝑘𝑘)  and 𝑅𝑅𝑖𝑖(𝑘𝑘 − 1)  are 𝐻𝐻0  or 𝐻𝐻1 , correspondingly, the FC regards the 𝑖𝑖 -th SU’s 
sensing result at the 𝑘𝑘-th sensing interval as 𝐻𝐻0 or 𝐻𝐻1. It is obvious that the number of 
sensing results required for the subsequent sensing interval will not be more than that for 
the previous sensing interval as time progresses. 

It is worth noting that when the PU located in urban/suburban areas is at high/low 
channel usage, only 0 or 1 at the SU is sent to the FC, and the sequential idea and 
differential mechanism-based reporting way further reduces sensing results to quickly 
make a global decision.  The following sensing results aren’t required because the SU with 
the higher TrV is given priority to compute the likelihood ratio via the sequential and 
differential procedure. As a consequence, the FC can rapidly and accurately determine the 
PU status with the use of more reliable and valuable sensing information. 

 4. PERFORMANCE ANALYSIS 
Based on a survey of data fusion techniques and the proposed WD3S, we make an in-
depth analysis on its performance, in terms of the cooperative performance and the 
cooperative efficiency. 
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4.1 Cooperative Performance 

4.1.1 Voting Rule 
Though a variety of advanced voting rules evolve from the traditional GV, the decision 
condition remains unchanged. In other words, the cooperative performance for various 
voting rules under the same sensing environment is the same, i.e., the error probability. 

Through summing the possibility of report results of satisfying the voting rule, when 
𝜌𝜌𝜌𝜌 ≤ 𝐾𝐾, the global false alarm and miss detection probabilities can be obtained as (18) 
and (19); when 𝜌𝜌𝜌𝜌 > 𝐾𝐾, similar results are also obtained. 

𝑄𝑄𝑓𝑓,𝑣𝑣 = ���
𝑁𝑁
𝑖𝑖
� � ��

𝜌𝜌𝜌𝜌
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𝜌𝜌𝜌𝜌−𝑘𝑘𝑚𝑚
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𝑘𝑘𝑚𝑚=0
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               (18) 

𝑄𝑄𝑑𝑑,𝑣𝑣 = ���
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where 𝑃𝑃𝑓𝑓𝑓𝑓 and 𝑃𝑃𝑑𝑑𝑑𝑑 are the probabilities of the false alarm and detection at the FC, and 
respectively given by 

𝑃𝑃𝑓𝑓𝑓𝑓 = �1 − 𝑃𝑃𝑓𝑓�𝛼𝛼0 + 𝑃𝑃𝑓𝑓(1 − 𝛼𝛼1)                                      (20) 
𝑃𝑃𝑑𝑑𝑑𝑑 = (1 − 𝑃𝑃𝑑𝑑)𝛼𝛼0 + 𝑃𝑃𝑑𝑑(1 − 𝛼𝛼1)                                     (21) 

4.1.2 Hypothesis Test 
Different from voting rule, some a-priori information are assumed known in the 
hypothesis test, i.e., the conditional densities 𝑃𝑃(𝐻𝐻𝜗𝜗�∣�𝐻𝐻𝜃𝜃)  and probabilities of the two 
hypotheses 𝑃𝑃(𝐻𝐻𝜃𝜃). In the observation space, the points are generated is consistent with 
conditional densities. Therefore, the likelihood ratio for the 𝑖𝑖-th SU can be obtained by 
𝑃𝑃(𝑅𝑅𝑖𝑖 �∣�𝐻𝐻1)
𝑃𝑃(𝑅𝑅𝑖𝑖 �∣�𝐻𝐻0) = �
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𝑃𝑃𝑑𝑑,𝑖𝑖

𝑃𝑃𝑓𝑓,𝑖𝑖
�
𝑅𝑅𝑖𝑖
�
1 − 𝑃𝑃𝑑𝑑,𝑖𝑖

1 − 𝑃𝑃𝑓𝑓,𝑖𝑖
�
1−𝑅𝑅𝑖𝑖

(22) 

where 𝑃𝑃𝑓𝑓,𝑖𝑖 = 𝑃𝑃𝑓𝑓, 𝑃𝑃𝑑𝑑,𝑖𝑖 = 𝑃𝑃𝑑𝑑 for a HU, and 𝑃𝑃𝑓𝑓,𝑖𝑖 = 𝑃𝑃𝑓𝑓𝑓𝑓, 𝑃𝑃𝑑𝑑,𝑖𝑖 = 𝑃𝑃𝑑𝑑𝑑𝑑 for a MU. 
Since both Bayesian detection and N-P test adopt the same LRT and the only difference 

lies in the decision threshold, there is little difference in the cooperative performance 
between them. Furthermore, SPRT also adopts the same LRT as well as Bayesian 
detection and N-P test, the double threshold decision and sequential randomness make the 
cooperative performance unstable, especially in a hostile environment. Unlike the above 
hypothesis tests, both WSPRT and our proposed WD3S take Byzantine attack into 
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consideration. Nevertheless, the advantages of WSPRT and WD3S may not be obvious 
when there are no MUs in the CR system. 

4.2 Cooperative Efficiency 

4.2.1 Average Number of Samples 
In addition to the cooperative performance, the cooperative efficiency should be taken 
into account because CSS uses a substantial amount of communication resources to report 
sensing results, which reduces or even undermines the available cooperative gain in a 
large-scale CR system [5]. Therefore, the number of sensing results required at the FC to 
make a global decision in a sensing observation period is our focus, that is, the average 
number of samples. 

Regardless of MUs, all of Or, And, Majority, N-P test and Bayesian detection are 
employed for a fixed number of samples. When there are MUs in the CR system, the 
average number of samples for S2V and S3V have been given by (8) and (9)(10) in [5], 
respectively. Otherwise, though the average number of samples for SPRT in the absence 
of Byzantine attack has been given in [33], the presence of Byzantine attack may change 
the conditional probability of the CR system. Hence, the close-form expressions of the 
error probability and the average number of samples for the hypothesis test cannot be 
provided. 

4.2.2 Detection Efficiency 
In order to evaluate the detection efficiency of data fusion techniques, we take the error 
probability and the average number of samples into consideration to define a performance 
index as 

𝜂𝜂𝑒𝑒 =
1 − 𝑄𝑄𝑒𝑒
𝑁𝑁𝑠𝑠

                                                                (23) 

where 𝑄𝑄𝑒𝑒 = 𝑄𝑄𝑓𝑓𝑃𝑃(𝐻𝐻0) + (1 − 𝑄𝑄𝑑𝑑)𝑃𝑃(𝐻𝐻1) is the error probability, 𝑄𝑄𝑓𝑓  and 𝑄𝑄𝑑𝑑  are the global 
false alarm and detection probabilities respectively, 𝑁𝑁𝑠𝑠 is the average number of samples. 

According to (23), the detection efficiency is further normalized as 
𝜂𝜂 =

𝜂𝜂𝑒𝑒
𝜂𝜂𝑚𝑚

                                                                     (24) 

where 𝜂𝜂𝑚𝑚 represents the maximum detection efficiency among data fusion techniques. 

 

5. SIMULATION RESULTS 

In this section, a series of simulation results are presented to verify the cooperative 
performance and efficiency of our proposed WD3S and other data fusion technologies in 
1000 sensing intervals. To this aim, we consider that the percentage of MUs varies from 
0 to 90% in an interval of 10% and a pair of attack probabilities are set to be 0.1, 0.5 and 
1, respectively. The values of other simulation parameters are shown in Table 1. 
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Table 1. Simulation parameters 
Parameters Symbol Value 
Number of SUs 𝑁𝑁 100 
Probability of the hypotheses 𝐻𝐻0 𝑃𝑃(𝐻𝐻0) 0.3 
Probability of the hypotheses 𝐻𝐻1 𝑃𝑃(𝐻𝐻1) 0.7 
Local false alarm probability 𝑃𝑃𝑓𝑓 0.1 
Local detection probability 𝑃𝑃𝑑𝑑 0.9 
TrV threshold in WSPRT 𝑔𝑔 −5 
Tolerated false alarm probability 𝑃𝑃�𝑓𝑓 10—3 

Tolerated miss detection probability 𝑃𝑃�𝑚𝑚 10—4 
Cost of making 𝐻𝐻0 under 𝐻𝐻0 𝐶𝐶00 0 
Cost of making 𝐻𝐻1 under 𝐻𝐻1 𝐶𝐶11 0 
Cost of making 𝐻𝐻0 under 𝐻𝐻1 𝐶𝐶01 10 
Cost of making 𝐻𝐻1 under 𝐻𝐻0 𝐶𝐶10 1 
Threshold of N-P test 𝜆𝜆𝑛𝑛𝑝𝑝 100 

 

5.1 CSS Performance 
 

 
Fig. 4.  The error probability v. s. the percentage of MUs when 𝛼𝛼0 = 𝛼𝛼1 = 0.1. 
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Fig. 5.  The error probability v. s. the percentage of MUs when 𝛼𝛼0 = 𝛼𝛼1 = 0.5. 

As illustrated in Fig. 4, the error probability for voting rule and hypothesis test are 
simulated when the attack probability 𝛼𝛼0 = 𝛼𝛼1 = 0.1 . In the voting rule, the error 
probability of Or and And are stable at 0.3 and 0.7, respectively. This is because the both 
false alarm probability and the detection probability are high in Or rule while low in And 
rule, meanwhile 𝑄𝑄𝑒𝑒 = 𝑄𝑄𝑓𝑓𝑃𝑃(𝐻𝐻0) + (1 − 𝑄𝑄𝑑𝑑)𝑃𝑃(𝐻𝐻1) . Besides, the error probability for 
other data fusion technologies are basically 0. Apparently, for some MUs with a low attack 
probability, most data fusion technologies for CSS have a certain error tolerance rate and 
can maintain relatively good cooperative performance. 

When the MU increases the attack probability, i.e., 𝛼𝛼0 = 𝛼𝛼1 = 0.5, the error probability 
the error probability is displayed in Fig. 5. Though Or and And still keeps the same error 
probability as well as 𝛼𝛼0 = 𝛼𝛼1 = 0.1 , the error probability of other data fusion 
technologies has changed with the increase of MUs. For example, the error probability of 
Majority rule/Bayesian detection/N-P test begins to increase when the percentage of MUs 
is 70%/68%/64%. Specifically, the error probability of SPRT begins to jitter when 𝜌𝜌 =
0.3, and the jitter becomes more severe as MUs increase because of the randomness of 
the LRT calculation process. Obviously, these traditional data fusion technologies are 
naturally resistant to Byzantine attack, but as the number and attack probability of MUs 
increase, the CSS performance will eventually decrease. 

0 10 20 30 40 50 60 70 80 90

The percentage of MUs, (%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Th
e 

er
ro

r p
ro

ba
bi

lit
y,

 Q
e

Or

And

Majority

N-P

Bayesian

SPRT

WSPRT

WD3S



3754                                                                               Wu et al.: Secure and Efficient Cooperative Spectrum Sensing  
Against Byzantine Attack for Interweave Cognitive Radio System 

 

Fig. 6.  The error probability v. s. the percentage of MUs when 𝛼𝛼0 = 𝛼𝛼1 = 1. 

When there is an always attack in the CSS process, the error probability is simulated 
when the attack probabilities are 1. From Fig. 6, we can see that all data fusion 
technologies except for Or and And rule are capable of defending against always false 
attack when the malicious ratio is relatively small. Unfortunately, once the malicious ratio 
exceeds 50%, none of data fusion technologies other than WD3S can make an accurate 
decision. In this case, the error probability for Majority, N-P test, and Bayesian detection 
is higher than 50%, in other words, the cooperative performance is not much better than 
random guessing. In other words, MUs completely compromise the CR system, thereby 
making the FC incapable of decision-making. Further, the error probability of SPRT and 
WSPRT involving the sequential idea fluctuates as the MUs increase. Nevertheless, the 
SPRT fluctuates slowly 20% to 80% while WSPRT fluctuates quickly 30% to 60%. This 
is due to the fact that the weight of WSPRT suppresses always attack to a certain extent, 
but the further increase in the proportion of MUs makes the global decision unreliable, 
and the weight is no longer effective. After the attack ratio exceed 60%, the global decision 
of these data fusion technologies at the FC is completely distorted. 

On contrary, regardless of the attack probability and attack ratio, WD3S always keeps 
remarkable performance. Undoubtedly, this is the benefit of the data transmission 
consistency verification. Since the data transmission monitoring process provides WD3S 
with a fundamental brick to evaluate the local sensing results and update SUs’ TrV instead 
of the global decision, Byzantine identification and suppression are not affected by attack 
strategies at all. 
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5.2 CSS Efficiency 

 

Fig. 7.  The detection efficiency v. s. the percentage of MUs when 𝛼𝛼0 = 𝛼𝛼1 = 0.1. 

 

Fig. 8.  The detection efficiency v. s. the percentage of MUs when 𝛼𝛼0 = 𝛼𝛼1 = 0.5. 
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present the detection efficiency comparison of GV and other sequential methods and 
assume that GV, S2V and S3V adopt the decision condition of Majority rule to build a fair 
comparison framework. 

From Fig. 7, GV needs sensing results of all SUs to make a global decision and has not 
advantages in the cooperative performance, thereby it has the lowest detection efficiency. 
Further, both S2V and S3V takes a specific scenario where the PU located in 
urban/suburban areas may be at high/low channel usage into consideration, specifically, 
S3V integrates the sequential idea into S2V to reduce the number of samples, all of them 
make no difference in the error probability, therefore the improvement of the detection 
efficiency is not obvious. Unlike the voting rule, the detection efficiency gradually 
decreases in SPRT and WSPRT as the percentage of MUs increases. This is reasonable, 
because Byzantine attack does not decrease the error probability at this time but makes 
the FC need more sensing results to make the global decision. 

 

Fig. 9.  The detection efficiency v. s. the percentage of MUs when 𝛼𝛼0 = 𝛼𝛼1 = 1. 

When the attack probability and ratio increase, it is known in Fig. 4 and Fig. 5 that the 
error probability of the voting rule, SPRT and WSPRT begins to increase. Since the 
number of sensing results required by the FC also increases, the detection efficiency is 
expected to decrease in Fig. 8, which is a consequence of the joint effect of the attack 
probability and ratio. However, under a low attack probability, WSPRT does not play the 
advantage of the weight in the likelihood ratio calculation. In Fig. 9, there is no doubt that 
though the detection efficiency of WSPRT has jitter, it still has certain advantages 
compared with SPRT. The design of the likelihood ratio weight has a positive impact on 
the error probability and detection efficiency. Meanwhile, the increasing MUs 
implementing always false attack make the error probability of three voting rules decrease 
until it reaches 1, resulting in a detection efficiency of 0. 

Under different attack probabilities and attack ratios, WD3S always maintains a very 
high detection efficiency, especially in a high attack probability. Following the remarkable 
error performance, the reason for this phenomenon is that the reporting way combining 
the sequential idea and differential mechanism reduces the sample size and the TrV 
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descending order helps LRT quickly make an accurate global decision at the FC. In 
particular, the reuse weight allocation makes the FC benefit from the malicious sensing 
results in WD3S. As a result, the higher the attack probability, the higher the detection 
efficiency. 

In summary, with the assistance of the data transmission consistency verification, the 
reuse weight allocation and the sequential and differential -based reporting way enable 
the FC to efficiently make an accurate global decision. 

6. Conclusions 
In this paper, we study data fusion technologies for CSS in an interweave CR system. To 
defend against Byzantine attack, we review existing data fusion technologies by dividing them 
into voting rule and hypothesis test. On the basis of advantages and disadvantages, we propose 
a secure and efficient WD3S to mitigate the negative impact of dynamic Byzantine attack on 
CSS, in which makes use of the data transmission status to verify the correctness of the global 
decision, designs a weight allocation to selectively benefit from MUs’ sensing results, and 
adopts the sequential and differential reporting way to submit the sensing results in the SU’s 
TrV descending order. Moreover, the CSS performance and efficiency of a series of data 
fusion technologies are evaluated. Finally, numerical simulation results show the concreteness 
and effectiveness of our theoretical analysis on existing data fusion technologies and 
corroborate the superiority of WD3S in the error probability and the detection efficiency. 
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