Acknowledgement
이 논문은 2022년도 정부(과학기술정보통신부)의 재원으로 정보통신산업진흥원의 지원을 받아 수행된 헬스케어 AI 융합 연구개발 사업임(No.S0254-22-1006)
References
- 공희산, 박재훈, 김광수. (2021). 의료 데이터의 자기지도학습 적용을 위한 pretext task 분석. 2021 한국정보통신학회 춘계학술대회. 38-40.
- Baltruschat, I. M., Nickisch, H., Grass, M., Knopp, T., & Saalbach, A. (2019). Comparison of deep learning approaches for multi-label chest X-ray classification. Scientific reports, 9(1), 1-10. https://doi.org/10.1038/s41598-018-37186-2
- Banerjee, S., Misra, R., Prasad, M., Elmroth, E., & Bhuyan, M. H. (2020, November). Multi-diseases classification from chest-X-ray: A federated deep learning approach. In Australasian Joint Conference on Artificial Intelligence (pp. 3-15). Springer, Cham.
- Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., & Joulin, A. (2020). Unsupervised learning of visual features by contrasting cluster assignments. Advances in Neural Information Processing Systems, 33, 9912-9924.
- Chen, T., Kornblith, S., Norouzi, M., & Hinton, G. (2020, November). A simple framework for contrastive learning of visual representations. In International conference on machine learning (pp. 1597-1607). PMLR.
- Chen, X., Fan, H., Girshick, R., & He, K. (2020). Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297.
- Doersch, C., Gupta, A., & Efros, A. A. (2015). Unsupervised visual representation learning by context prediction. In Proceedings of the IEEE international conference on computer vision (pp. 1422-1430).
- Grill, J. B., Strub, F., Altche, F., Tallec, C., Richemond, P., Buchatskaya, E., ... & Valko, M. (2020). Bootstrap your own latent-a new approach to self-supervised learning. Advances in neural information processing systems, 33, 21271-21284.
- Guan, Q., Huang, Y., Luo, Y., Liu, P., Xu, M., & Yang, Y. (2021). Discriminative Feature Learning for Thorax Disease Classification in Chest X-ray Images. IEEE Transactions on Image Processing, 30, 2476-2487. https://doi.org/10.1109/TIP.2021.3052711
- He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).
- Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4700-4708).
- Irvin, J., Rajpurkar, P., Ko, M., Yu, Y., & Ciurea-Ilcus, S. A large chest radiograph dataset with uncertainty labels and expert comparison. In Proc AAAI Conf Artif Intell (No. 33, p. 590). CheXPert. https://stanfordmlgroup.github.io/competitions/chexpert/
- Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., ... & Zhao, S. (2021). Advances and open problems in federated learning. Foundations and Trends® in Machine Learning, 14(1-2), 1-210. https://doi.org/10.1561/2200000083
- Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich, S., & Suresh, A. T. (2020, November). Scaffold: Stochastic controlled averaging for federated learning. In International Conference on Machine Learning (pp. 5132-5143). PMLR.
- Komodakis, N., & Gidaris, S. (2018, April). Unsupervised representation learning by predicting image rotations. In International Conference on Learning Representations (ICLR).
- Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., & Smith, V. (2020). Federated optimization in heterogeneous networks. Proceedings of Machine Learning and Systems, 2, 429-450.
- Mangal, A., Kalia, S., Rajgopal, H., Rangarajan, K., Namboodiri, V., Banerjee, S., & Arora, C. (2020). CovidAID: COVID-19 detection using chest X-ray. arXiv preprint arXiv:2004.09803.
- McMahan, B., Moore, E., Ramage, D., Hampson, S., & y Arcas, B. A. (2017, April). Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics (pp. 1273-1282). PMLR.
- Misra, I., & Maaten, L. V. D. (2020). Self-supervised learning of pretext-invariant representations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 6707-6717).
- Noroozi, M., & Favaro, P. (2016, October). Unsupervised learning of visual representations by solving jigsaw puzzles. In European conference on computer vision (pp. 69-84). Springer, Cham.
- Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., ... & Ng, A. Y. (2017). Chexnet: Radiologist-level pneumonia detection on chest x-rays with deep learning. arXiv preprint arXiv:1711.05225.
- Wang, J., Liu, Q., Liang, H., Joshi, G., & Poor, H. V. (2020). Tackling the objective inconsistency problem in heterogeneous federated optimization. Advances in neural information processing systems, 33, 7611-7623.
- Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, Ronald Summers, ChestX-ray8: Hospital-scale Chest X-ray Database and Benchmarks on Weakly-Supervised Classification and Localization of Common Thorax Diseases, IEEE CVPR, pp. 3462-3471, 2017. NIH Chest X-ray14, https://www.kaggle.com/datasets/nih-chest-xrays/data
- Yan, B., Wang, J., Cheng, J., Zhou, Y., Zhang, Y., Yang, Y., ... & Liu, B. (2021, July). Experiments of federated learning for COVID-19 chest X-ray images. In International Conference on Artificial Intelligence and Security (pp. 41-53). Springer, Cham.
- Zbontar, J., Jing, L., Misra, I., LeCun, Y., & Deny, S. (2021, July). Barlow twins: Self-supervised learning via redundancy reduction. In International Conference on Machine Learning (pp. 12310-12320). PMLR.