DOI QR코드

DOI QR Code

임피던스 측정을 통한 GGBS 콘크리트의 염화물 흡수 평가

Evaluation of Chloride Absorption in GGBS Concrete by Impedance Measurements

  • 김재환 (한국건설기술연구원 구조연구본부) ;
  • 조한민 (한국건설기술연구원 구조연구본부) ;
  • 유영준 (한국건설기술연구원 구조연구본부)
  • 투고 : 2022.11.17
  • 심사 : 2022.12.07
  • 발행 : 2022.12.31

초록

철근 콘크리트 구조물의 사용 수명 확보는 경제적인 측면과 안전성을 고려하였을 때 필수적이다. 현장에 노출된 콘크리트에서 염해는 대표적인 열화 현상으로 잘 알려져 있다. 이를 사전에 예방하기 위한 방안으로 시멘트 대체재인 고로슬래그 (Ground granulated blast-furnace slag; GGBS)를 혼입하여 염해 저항성을 높이는 연구가 다양하게 진행하였고, 현재는 GGBS를 혼입한 콘크리트의 사용이 의무화되고 있다. 현장 콘크리트는 대부분 수분 불포화 상태를 유지하기 때문에 흡수 현상에 대한 연구가 필요하지만, 기존의 연구는 염화물 확산에 초점이 맞춰진 연구가 대부분이다. 콘크리트 내의 염화물 흡수을 측정하기 위해 제시된 방법들은 대부분은 실험실에서 수행이 가능한 고가의 장비를 사용하고 있다. 흡수현상을 간단하고 실용적으로 평가할 수 있는 기술 개발이 필요하다. 본 연구에서 선행 연구로 GGBS 콘크리트의 염해 저항성을 염화물 흡수 시험의 무게 변화와 임피던스 측정을 통해서 평가하였다. 실험 결과를 보면, 염화물 흡수양과 측정된 전기비저항(또는 전기전도도)와 선형적 상관관계를 확인할 수 있었다. 흡수 시험이 완료된 시점에서 측정된 전기전도도는 PC 콘크리트의 경우 250.8 S/m (w/b=0.4)과 303.1 S/m (w/b=0.6)이고, GGBS 콘크리트는 42.6 S/m (w/b=0.4)과 64.4 S/m (w/b=0.6) 로 나타났다. GGBS 콘크리트의 염해저항성이 높은 것으로 판단된다. 본 연구에서는 염화물 흡수 및 임피던스 측정에 영향을 미치는 인자를 고려하였을 때, GGBS 사용에 따른 콘크리트의 공극 구조가 염해 저항성에 주요한 영향을 미치는 것을 확인할 수 있었다. 콘크리트 배합시 사용되는 결합재의 종류에 따라 공극구조가 다르게 나타날 수 있으므로 염해 환경에 노출된 구조물 건설시에는 결합재 사용에 대한 주의가 필요할 것으로 판단된다.

It is essential that service life of reinforced concrete structures in economic and safety aspects should be secured. It is well-known that chloride attack is a typical deterioration mechanism in field concrete structures. To prevent serious accidents like collapse, many studies have been conducted to increase resistance of chloride ingress using concrete mixed with GGBS. The usage of GGBS concrete is nowadays mandatory. Since most concretes in the field are unsaturated, study regarding chloride absorption is necessary, but many studies have focused on the chloride diffusion phenomenon. Methods for evaluating chloride absorption are cost and improper in the field. It is necessary to develop a simple method for evaluating chloride absorption in practice. This study evaluated resistance of chloride ingress in GGBS concretes with impedance measurement and absorption test. From the results, it was confirmed that the contents of absorbed chloride were linearly correlated with the measured electrical resistivities (or conductivities) in the concrete. At the end of the test, the electrical conductivities were 250.8 S/m (w/b=0.4) and 303.1 S/m (w/b=0.6) for PC concretes, and 2.6 S/m (w/b=0.4) and 64.4 S/m (w/b=0.6) for GGBS concretes, respectively. Considering influencing factors for chloride absorption and impedance measurement, chloride ingress into concrete is mainly affected by pore structures due to replacement of GGBS. Especially, formations of pore structure are different with binder, thereby binders should be considered in building reinforced concrete structures exposed to chloride environments.

키워드

과제정보

본 연구는 과학기술정보통신부 한국건설기술연구원 연구운영비지원(주요사업)사업으로 수행되었습니다(과제번호 20220151-001, 중소형 노후 콘크리트 교량의 상태 정량화 기술 개발).

참고문헌

  1. Alaswad, G., Suryanto, B., and McCarter, W. J. (2018), Moisture movement within concrete exposed to simulated hot arid/semi-arid conditions, Proceedings of the Institution of Civil Engineers - Construction Materials, 171, 1-15. https://doi.org/10.1680/jcoma.2018.171.1.1
  2. ASTM C 1202. (2022), Standard test method for electrical indication of concrete's ability to resist chloride ion penetration, ASTM International, West Conshohocken.
  3. ASTM C 1585-20. (2020), Standard test method for measurement of rate of absorption of water by hydraulic-cement concretes, ASTM International, West Conshohocken.
  4. BS 1881-122. (2020), Testing concrete. Method for determination of water absorption, British Standards, Institution, London.
  5. BS EN 206. (2021), Concrete-specification, perforamnce, production and conformity, British Standards, Institution, London.
  6. Ran Huang, A. C., Wu. J., and Chen, C. (2005), Influence of GGBS on durability and corrosion behavior of reinforced concrete, Materials Chemistry and Physics, 93, 404-411. https://doi.org/10.1016/j.matchemphys.2005.03.043
  7. Kim, J., McCarter, W. J., Suryanto, B., Nanukuttan, S., Basheer, P. A. M., and Chrisp, T. M. (2016), Chloride ingress into marine exposed concrete: A comparison of empirical- and physically-based models, Cement and Concrete Composites, 72, 133-145. https://doi.org/10.1016/j.cemconcomp.2016.06.002
  8. Kim, J., McCarter, W. J., and Suryanto, B. (2021), Cover-zone protective qualities under corrosive environments, Journal of Building Engineering, 33, 101618. https://doi.org/10.1016/j.jobe.2020.101618
  9. Kim, J., and You, Y-. J. (2022), Evaluating the chloride absorption of unsaturated cover-concrete using electrical measurements, KSCE Journal of Civil Engineering, 26(3), 1354-1364. https://doi.org/10.1007/s12205-021-5138-8
  10. Kim, K-. S, Park, K-. T., and Kim, J. (2020), Evaluating chloride absorption of reinforced concrete structures with crack widths, Journal of the Korea Institute for Structural Maintenance and Inspection, 24(6), 10-16 (in Korean). https://doi.org/10.11112/JKSMI.2020.24.6.10
  11. KS F 2405. (2010), Standard test method for compressive strength of concrete, Korean Standards Association, Seoul (in Korean).
  12. KS L 5210. (2017), Portland blast-furnace slag cement, Korean Standards Association, Seoul (in Korean).
  13. Luo, R., Cai, Y., Wang, C., and Huang, X. (2003), Study of chloride binding and diffusion in GGBS concrete, Cement and Concrete Research, 33(1), 1-7. https://doi.org/10.1016/S0008-8846(02)00712-3
  14. McCarter, W. J., Alaswad, G., and Suryanto, B. (2018), Transient moisture profiles in cover-zone concrete during water absorption, Cement and Concrete Research, 108, 167-171. https://doi.org/10.1016/j.cemconres.2018.04.001
  15. McCarter, W. J., Chrisp, T. M., Starrs, G., Basheer, P. A. M., Nanukuttan, S., Srinivasan, S., and Magee, B. J. (2015), A druability performance-index for concrete: development in a novel test method, Internationl Journal of Structural Engineering, 6(1), 2-22. https://doi.org/10.1504/IJSTRUCTE.2015.067966
  16. McCarter, W. J., Suryanto, B. Taha, H. M., Starrs, G., and Jaehwan Kim, J. (2022), Features of immittance spectra as performance indicators for cement-based concretes, Advances in Cement Research, Online published, 1-38
  17. NT Build 492. (1999), Concrete, mortar and cement-based repair materials: Chloirde migration coefficient from non-steady-state migration experiments, Nordtest, Espoo.
  18. Tutti, K. (1982), Corrosion of Steel in Concrete, Swedish Cement and Concrete Institute (CIB), Report No. 4-82.
  19. Yoon, Y. S., Jeong, G. C., and Kwon, S. J. (2022), The comparison of apparent chloride diffusion coefficients in GGBFS concrete considering sea water exposure conditions, Journal of the Korea Institute for Structural Maintenance and Inspection, 26(2), 18-27 (in Korean). https://doi.org/10.11112/JKSMI.2022.26.2.18
  20. Yoon, Y.S., Cho, S., and Kwon, S.J. (2019), Prediction equation for chloride diffusion in concrete containing GGBFS based on 2-year cured results, Journal of the Korea Institute for Structural Maintenance and Inspection, 23(2), 1-9 (in Korean). https://doi.org/10.11112/JKSMI.2019.23.2.1