DOI QR코드

DOI QR Code

Application of Molecular Simulation in Reverse Osmosis Membrane Research

역삼투압 분리막 연구에서의 분자 전산모사 응용

  • Lee, Tae Kyung (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
  • 이태경 (경상국립대학교 나노신소재융합공학과) ;
  • 남상용 (경상국립대학교 나노신소재융합공학과)
  • Received : 2022.10.25
  • Accepted : 2022.11.25
  • Published : 2022.12.10

Abstract

The desalinated water obtained by the water treatment process based on the membrane is attracting a lot of attention as a promising technology that can solve the global water shortage problem. Reverse osmosis membrane-based desalination, one of the most widely used desalination processes, is a technology that desalinates abundant seawater on Earth, thus having great potential in the desalination industry. To improve the performance of the desalination process, it is necessary to understand the reverse osmosis mechanism of the membrane at the atomic/molecular level. In this review, we introduce molecular simulation, which plays an important role in material research today, and the roles of computational simulation at the atomic/molecular level in the development of reverse osmosis membranes.

분리막을 활용한 수처리 공정을 통해 얻어진 담수된 물은 전 세계적인 물 부족 문제를 해결해 줄 수 있는 유망한 기술로 많은 주목을 받고 있다. 오늘날 담수화에 가장 널리 활용되고 있는 역삼투압 분리막 기반 공정은 지구상에 풍부한 바닷물을 담수화하는 기술이기 때문에 산업적으로도 그 잠재성이 매우 풍부하다. 이러한 담수 공정 성능을 향상시키기 위해서는 분리막의 역삼투압 메커니즘을 원자/분자 수준에서 이해할 필요가 있다. 본 총설에서는 오늘날 소재 연구에 있어 중요한 역할을 담당하고 있는 분자 전산모사에 대한 소개와 함께 역삼투압 분리막 연구 개발에 있어 원자/분자 수준에서의 전산모사 역할을 소개하고자 한다.

Keywords

Acknowledgement

본 논문은 산업통상자원부 및 산업기술평가관리원의 지원(20019441)과 정부(교육부)의 재원으로 한국연구재단의 지원(No. 2020R1A6A03038697)을 받아 수행됨.

References

  1. H. Strathmann, Introduction to Membrane Science and Technology, Wiley, Weinheim, Germany (2011).
  2. A. Basile and C. Charcosset, Integrated membrane systems and processes, Wiley, Newark, California (2015).
  3. K. P. Lee, T. C. Arnot, and D. Mattia, A review of reverse osmosis membrane materials for desalination-Development to date and future potential, J. Membr. Sci. 370, 1-22 (2011). https://doi.org/10.1016/j.memsci.2010.12.036
  4. S. Krishna, I. Sreedhar, and C. M. Patel, Molecular dynamics simulation of polyamide-based materials -A review, Comput. Mater. Sci., 200, 110853 (2021). https://doi.org/10.1016/j.commatsci.2021.110853
  5. D. Cohen-Tanugi and J. C. Grossman, Nanoporous graphene as a reverse osmosis membrane: Recent insights from theory and simulation, Desalination, 366, 59-70 (2015). https://doi.org/10.1016/j.desal.2014.12.046
  6. S. L. Mayo, B. D. Olafson, and W. A. Goddard, DREIDING: A generic force field for molecular simulations, J. Phys. Chem., 94, 8897-8909 (1990). https://doi.org/10.1021/j100389a010
  7. H. Sun, P. Ren, and J. R. Fried, The COMPASS force field: Parameterization and validation for phosphazenes, Comput. Theor. Polym. Sci., 8, 229-246 (1998). https://doi.org/10.1016/S1089-3156(98)00042-7
  8. P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, D. C. Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, A 2nd generation force-field for the simulation of proteins, nucleic-acids, and organic-molecules, J. Am. Chem. Soc., 117, 5179- 5197 (1995). https://doi.org/10.1021/ja00124a002
  9. A. D. MacKerell, D. Bashford, M. Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, and M. Karplus, All-atom empirical potential for molecular modeling and dynamics studies of proteins, J. Phys. Chem. B, 102, 3586-3616 (1998). https://doi.org/10.1021/jp973084f
  10. J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, and D. A. Case, Development and testing of a general Amber force field, J. Comput. Chem., 25, 1157-1174 (2004). https://doi.org/10.1002/jcc.20035
  11. D. Kony, W. Damm, S. Stoll, and W. F. Van Gunsteren, An improved OPLS-AA force field for carbohydrates, J. Comput. Chem., 23, 1416-1429 (2002). https://doi.org/10.1002/jcc.10139
  12. K. Gaedt and H.-D. H ltje, Consistent valence force-field parameterization of bond lengths and angles with quantum chemical ab initio methods applied to some heterocyclic dopamine D3-receptor agonists, J. Comput. Chem., 19, 935-946 (1998). https://doi.org/10.1002/(SICI)1096-987X(199806)19:8<935::AID-JCC12>3.0.CO;2-6
  13. S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, J. Comput. Phys., 117, 1-19 (1995). https://doi.org/10.1006/jcph.1995.1039
  14. D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. C. Berendsen, GROMACS: Fast, flexible, and free, J. Comput. Chem., 26, 1701-1718 (2005). https://doi.org/10.1002/jcc.20291
  15. Materials Studio, BIOVIA Inc.: San Diego, CA.
  16. J. C. Phillips, D. J. Hardy, J. D. C. Maia, J. E. Stone, J. V. Ribeiro, R. C. Bernardi, R. Buch, G. Fiorin, J. Henin, W. Jiang, R. McGreevy, M. C. R. Melo, B. K. Radak, R. D. Skeel, A. Singharoy, Y. Wang, B. Roux, A. Aksimentiev, Z. Luthey-Schulten, L. V. Kale, K. Schulten, C. Chipot, and E. Tajkhorshid, Scalable molecular dynamics on CPU and GPU architectures with NAMD, J. Chem. Phys., 153, 044130 (2020). https://doi.org/10.1063/5.0014475
  17. D. A. Case, T. E. Cheatham, T. Darden, H. Gohlke, R. Luo, K. M. Merz, A. Onufriev, C. Simmerling, B. Wang, and R. J. Woods, The Amber biomolecular simulation programs, J. Comput. Chem., 26, 1668-1688 (2005). https://doi.org/10.1002/jcc.20290
  18. M. Ding, A. Szymczyk, F. Goujon, A. Soldera, and A. Ghoufi, Structure and dynamics of water confined in a polyamide reverse-osmosis membrane: A molecular-simulation study, J. Membr. Sci., 458, 236-244 (2014). https://doi.org/10.1016/j.memsci.2014.01.054
  19. N. Zhang, S. Chen, B. Yang, J. Huo, X. Zhang, J. Bao, X. Ruan, and G. He, Effect of hydrogen-bonding interaction on the arrangement and dynamics of water confined in a polyamide membrane: A molecular dynamics simulation, J. Phys. Chem. B, 122, 4719-4728 (2018). https://doi.org/10.1021/acs.jpcb.7b12790
  20. M. Shen, S. Keten, and R. M. Lueptow, Dynamics of water and solute transport in polymeric reverse osmosis membranes via molecular dynamics simulations, J. Membr. Sci., 506, 95-108 (2016). https://doi.org/10.1016/j.memsci.2016.01.051
  21. Y. Song, F. Xu, M. Wei, and Y. Wang, Water flow inside polamide reverse osmosis membranes: A non-equilibrium molecular dynamics study, J. Phys. Chem. B, 121, 1715-1722 (2017). https://doi.org/10.1021/acs.jpcb.6b11536
  22. Z. E. Hughes and J. D. Gale, A computational investigation of the properties of a reverse osmosis membrane, J. Mater. Chem., 20, 7788-7799 (2010). https://doi.org/10.1039/c0jm01545h
  23. Y. Luo, E. Harder, R. S. Faibish, and B. Roux, Computer simulations of water flux and salt permeability of the reverse osmosis FT-30 aromatic polyamide membrane, J. Membr. Sci., 384, 1-9 (2011). https://doi.org/10.1016/j.memsci.2011.08.057
  24. H. Ebro, Y. M. Kim, and J. H. Kim, Molecular dynamics simulations in membrane-based water treatment process: A systematic overview, J. Membr. Sci., 438, 112-125 (2013). https://doi.org/10.1016/j.memsci.2013.03.027
  25. Y. Xiang, Y. Liu, B. Mi, and Y. Leng, Hydrated polyamide membrane and its interaction with alginate: A molecular dynamics study, Langmuir, 29, 11600-11608 (2013). https://doi.org/10.1021/la401442r
  26. Z. E. Hughes and J. D. Gale, Molecular dynamics simulations of the interactions of potential foulant molecules and a reverse osmosis membrane, J. Mater. Chem., 22, 175-184 (2012). https://doi.org/10.1039/c1jm13230j
  27. M. S. J. Sajib, Y. Wei, A. Mishra, L. Zhang, K.-I. Nomura, R. K. Kalia, P. Vashishta, A. Nakano, S. Murad, and T. Wei, Atomistic simulations of biofouling and molecular transfer of a cross- linked aromatic polyamide membrane for desalination, Langmuir, 36, 7658-7668 (2020). https://doi.org/10.1021/acs.langmuir.0c01308
  28. T. Yoshioka, K. Kotaka, K. Nakagawa, T. Shintani, H.-C. Wu, H. Matsuyama, Y. Fujimura, and T. Kawakatsu, Molecular dynamics simulation study of polyamide membrane structures and RO/FO water permeation properties, Membranes, 8, 127 (2018). https://doi.org/10.3390/membranes8040127
  29. D. Cohen-Tanugi and J. C. Grossman, Water desalination across nanoporous graphene, Nano Lett., 12, 3602-3608 (2012). https://doi.org/10.1021/nl3012853
  30. D. Konathan, J. Yu, T. A. Ho, and A. Striolo, Simulation insights for graphene-based water desalination membranes, Langmuir, 29, 11884-11897 (2013). https://doi.org/10.1021/la4018695
  31. D. Cohen-Tanugi and J. C. Grossman, Mechanical strength of nanoporous graphene as a desalination membrane, Nano Lett., 14, 6171-6178 (2014). https://doi.org/10.1021/nl502399y
  32. S. C. O'Hern, M. S. H. Boutilier, J.-C. Idrobo, Y. Song, J. Kong, T. Laoui, M. Atieh, and R. Karnik, Seletive ionic transport through tunable subnanometer poresin single-layer graphene membranes, Nano Lett., 14, 1234-1241 (2014). https://doi.org/10.1021/nl404118f
  33. Y. Liu and X. Chen, Mechanical properties of nanoporous graphene membrane, J. Appl. Phys., 115, 034303 (2014). https://doi.org/10.1063/1.4862312
  34. E. Harder, D. E. Walters, Y. D. Bodnar, R. S. Faibish, and B. Roux, Molecular dynamics study of a polymeric reverse osmosis, J. Phys. Chem. B, 113, 10177-10182 (2009). https://doi.org/10.1021/jp902715f
  35. L. Malaeb and G. M. Ayoub, Reverse osmosis technology for water treatment: State of the art review, Desalination, 267, 1-8 (2011). https://doi.org/10.1016/j.desal.2010.09.001
  36. Z. He, J. Zhou, X. Lu, and B. Corry, Bioinspired graphene nanopores with voltage-tunable ion selectivity for Na+ and K+, ACS Nano, 7, 10148-10157 (2013). https://doi.org/10.1021/nn4043628