DOI QR코드

DOI QR Code

Effect of Porous Flow Field on PEMFC Performance with Dead Ended Anode System

Dead ended anode 시스템에서 다공성 유로가 연료전지 성능에 미치는 영향

  • Kim, Junseob (School of Chemical Engineering, University of Ulsan) ;
  • Kim, Junbom (School of Chemical Engineering, University of Ulsan)
  • Received : 2022.10.24
  • Accepted : 2022.11.27
  • Published : 2022.12.10

Abstract

The dead-end anode (DEA) system is a method that closes the anode outlet and supplies fuel by pressure. The DEA method could improve fuel usage and power efficiency through system simplification. However, flooding occurs due to water and nitrogen back diffusion from the cathode to the anode during the DEA operation. Flooding is a cause of decreased fuel cell performance and electrode degradation. Therefore, tthe structure and components of polymer electrolyte membrane fuel cell (PEMFC) should be optimized to prevent anode flooding during DEA operation. In this study, the effect of a porous flow field with metal foam on fuel cell performance and fuel efficiency improvement was investigated in the DEA system. As a result, fuel cell performance and purge interval were improved by effective water management with a porous flow field at the cathode, and it was confirmed that cathode flow field structure affects water back-diffusion. On the other hand, the effect of the porous flow field at the anode on fuel cell performance was insignificant. Purge interval was affected by metal foam properties and shown stable performance with large cell size metal foam in the DEA system.

Dead ended anode (DEA) 시스템은 수소극(anode) 출구를 막고 압력으로 연료를 공급하는 방식이다. DEA 방식은 시스템 단순화를 통해 연료이용효율과 전력 효율을 향상시킬 수 있다. 하지만 DEA 운전 중 공기극(cathode)에서 수소극으로 질소와 물의 역확산으로 인한 범람(flooding)이 발생한다. 이러한 범람 현상은 연료전지 성능 저하와 전극 열화의 주요 요인이 된다. 따라서 DEA 운전 시 범람을 방지하기 위하여 연료전지 구조와 구성요소가 최적화되어야 한다. 본 연구에서는 DEA 시스템에서 연료전지의 성능과 연료이용효율 향상을 위해 발포 금속을 적용한 다공성 유로에 대한 영향을 조사하였다. 그 결과, 공기극에 다공성 유로를 사용한 경우 효과적인 물 관리로 연료전지 성능과 배출 간격(purge interval)이 개선되었고, 이를 통하여 공기극 유로 구조가 물 역확산에 영향을 미치는 것을 확인하였다. 이에 반해 수소극의 다공성 유로가 연료전지 성능에 미치는 영향은 미미하였다. DEA 시스템에서는 발포 금속 물성이 배출 간격에 영향을 미치며 cell 크기가 큰 발포 금속에서 안정적인 성능을 나타내었다.

Keywords

Acknowledgement

이 논문은 산업통상자원부가 지원한 '이전공공기관연계 육성사업'으로 지원을 받아 수행된 연구 결과입니다[과제명:전지·ESS기반 에너지산업 혁신생태계 구축사업(P0002068)]. 이 연구는 2020년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(20011633).

References

  1. Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Appl. Energy, 88, 981-1007 (2011). https://doi.org/10.1016/j.apenergy.2010.09.030
  2. G. Wang, Y. Yu, H. Liu, C. Gong, S. Wen, X. Wang, and Z. Tu, Progress on design and development of polymer electrolyte membrane fuel cell systems for vehicle applications: A review, Fuel Process. Technol., 179, 203-228 (2018). https://doi.org/10.1016/j.fuproc.2018.06.013
  3. S. Rodosik, J. P. Poirot-Crouvezier, and Y. Bultel, Simplified anode architecture for PEMFC systems based on alternative fuel feeding: Experimental characterization and optimization for automotive applications, Int. J. Hydrog. Energy, 45, 19720-19732 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.014
  4. Z. Huang, Q. Jian, and J. Zhao, Experimental study on improving the dynamic characteristics of open-cathode PEMFC stack with dead-end anode by condensation and circulation of hydrogen, Int. J. Hydrog. Energy, 45, 19858-19868 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.108
  5. J. C. Kurnia, A. P. Sasmito, and T. Shamim, Advances in proton exchange membrane fuel cell with dead-end anode operation: A review, Appl. Energy, 252, 113416 (2019) https://doi.org/10.1016/j.apenergy.2019.113416
  6. D. F. M. Santos, R. B. Ferreira, D. S. Falcao, and A. Pinto, Evaluation of a fuel cell system designed for unmanned aerial vehicles, Energy, 253, 124099 (2022). https://doi.org/10.1016/j.energy.2022.124099
  7. I. S. Han, J. Jeong, and H. K. Shin, PEM fuel-cell stack design for improved fuel utilization, Int. J. Hydrog. Energy, 38, 11996-12006 (2013). https://doi.org/10.1016/j.ijhydene.2013.06.136
  8. Y. Lee, B. Kim, and Y. Kim, An experimental study on water transport through the membrane of a PEFC operating in the dead-end mode, Int. J. Hydrog. Energy, 34, 7768-7779 (2009). https://doi.org/10.1016/j.ijhydene.2009.07.010
  9. Q. Meyer, S. Ashton, S. Torija, C. Gurney, P. Boillat, M. Cochet, E. Engebretsen, D. P. Fiegan, P. Adcock, P. R. Shearing, and D. J. L. Brett, Nitrogen blanketing and hydrogen starvation in dead-ended-anode polymer electrolyte fuel cells revealed by hydro-electro-thermal analysis, Electrochim. Acta, 203, 198-205 (2016). https://doi.org/10.1016/j.electacta.2016.04.018
  10. B. Chen, Y. Cai, J. Shen, Z. Tu, and S. H. Chan, Performance degradation of a proton exchange membrane fuel cell with dead-ended cathode and anode, Appl. Thermal Eng., 132, 80-86 (2018). https://doi.org/10.1016/j.applthermaleng.2017.12.078
  11. Y. Yang, X. Zhang, L. Guo, and H. Liu, Overall and local effects of operating conditions in PEM fuel cells with dead-ended anode, Int. J. Hydrog. Energy, 42, 4690-4698 (2017). https://doi.org/10.1016/j.ijhydene.2016.08.091
  12. S. Abbou, J. Dillet, D. Spernjak, R. Mukundan, R. L. Borup, G. Maranzana, and O. Lottin, High potential excursions during PEM fuel cell operation with dead-ended anode, J. Electrochem. Soc., 162 (10), F1212-F1220 (2015). https://doi.org/10.1149/2.0511510jes
  13. T. Matsuura, J. Chen, J. B. Siegel, and A. G. Stefanopoulou, Degradation phenomena in PEM fuel cell with dead-ended anode, Int. J. Hydrog. Energy, 38, 11346-11356 (2013). https://doi.org/10.1016/j.ijhydene.2013.06.096
  14. J. Yu, Z. Jiang, M. Hou, D. Liang, Y. Xiao, M. Dou, Z. Shao, and B. Yi, Analysis of the behavior and degradation in proton exchange membrane fuel cells with a dead-ended anode, J. Power Sources, 246, 90-94 (2014). https://doi.org/10.1016/j.jpowsour.2013.06.163
  15. S. Abbou, J. Dillet, G. Maranzana, S. Didierjean, and O. Lottin, Local potential evolutions during proton exchange membrane fuel cell operation with dead-ended anode - Part I: Impact of water diffusion and nitrogen crossover, J. Power Sources, 340, 337-346 (2017). https://doi.org/10.1016/j.jpowsour.2016.11.079
  16. Y. Yang, X. Zhang, L. Guo, and H. Liu, Local degradation in proton exchange membrane fuel cells with dead-ended anode, J. Power Sources, 477, 229021 (2020). https://doi.org/10.1016/j.jpowsour.2020.229021
  17. J. Chen, J. B. Siegel, and A. G. Stefanopoulou, Optimization of purge cycle for dead-ended anode fuel cell operation, Int. J. Hydrog. Energy, 38, 5092-5105 (2013). https://doi.org/10.1016/j.ijhydene.2013.02.022
  18. Z. Liu, J. Chen, H. Liu, C. Yan, Y. Hou, Q. He, J. Zhang, and D. Hissel, Anode purge management for hydrogen utilization and stack durability improvement of PEM fuel cell systems, Appl. Energy, 275, 115110 (2020) https://doi.org/10.1016/j.apenergy.2020.115110
  19. B. Chen, Z. Tu, and S. H. Chan, Performance degradation and recovery characteristics during gas purging in a proton exchange membrane fuel cell with a dead-ended anode, Appl. Therm. Eng., 129, 968-978 (2018). https://doi.org/10.1016/j.applthermaleng.2017.10.102
  20. Y. F. Lin and Y. S. Chen, Experimental study on the optimal purge duration of a proton exchange membrane fuel cell with a dead-ended anode, J. Power Sources, 340, 176-182 (2017). https://doi.org/10.1016/j.jpowsour.2016.11.039
  21. M. Steinberger, J. Geiling, R. Oechsner, and L. Freya, Anode recirculation and purge strategies for PEM fuel cell operation with diluted hydrogen feed gas, Appl. Energy, 232, 113416 (2018).
  22. J. Shen, Z. Tu, and S. H. Chan, Effect of gas purging on the performance of a proton exchange membrane fuel cell with dead-ended anode and cathode, Int. J. Energy Res., 45, 14813-14823 (2021). https://doi.org/10.1002/er.6757
  23. R. Omrani, S. S. Mohammadi, Y. Mafinejad, B. Paul, R. Islam, and B. Shabani, PEMFC purging at low operating temperatures: An experimental approach, Int. J. Energy Res., 43, 7496-7507 (2019).
  24. J. Zhao, Q. Jian, Z. Huang, L. Luo, and B. Huang, Experimental study on water management improvement of proton exchange membrane fuel cells with dead-ended anode by periodically supplying fuel from anode outlet, J. Power Sources, 435, 226775 (2019). https://doi.org/10.1016/j.jpowsour.2019.226775
  25. Y. Wu, J. I. S. Cho, T. P. Neville, Q. Meyer, R. Ziesche, P. Boillat, M. Cochet, P. R. Shearing, and D. J. L. Brett, Effect of serpentine flow-field design on the water management of polymer electrolyte fuel cells: An in-operando neutron radiography study, J. Power Sources, 399, 254-263 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.085
  26. A. Soopee, A. P. Sasmito, and T. Shamim, Water droplet dynamics in a dead-end anode proton exchange membrane fuel cell, App. Energy, 233-234, 300-311 (2019). https://doi.org/10.1016/j.apenergy.2018.10.001
  27. J. Zhao, Q. Jian, and Z. Huang, Visualization study on enhancing water transport of proton exchange membrane fuel cells with a dead-ended anode by generating fluctuating flow at anode compartment, Energy Convers. Manag., 206, 112477 (2020). https://doi.org/10.1016/j.enconman.2020.112477
  28. M. E. Kim and Y. J. Sohn, Different flow fields, operation modes and designs for proton exchange membrane fuel cells with dead-ended anode, Int. J. Hydrog. Energy, 43, 1769-1780 (2018). https://doi.org/10.1016/j.ijhydene.2017.10.137
  29. M. E. Kim and Y. J. Sohn, Study on polymer electrolyte fuel cells with nonhumidification using metal foam in dead-ended operation, Energies, 13, 1238 (2020). https://doi.org/10.3390/en13051238
  30. B. Chen, Q. Liu, C. Zhang, Y. Liu, J. Shen, and Z. Tu, Numerical study on water transfer characteristics under joint effect of placement orientation and flow channel size for PEMFC with dead-ended anode, Energy, 254, 1234365 (2022).
  31. Y. Zhang, Y. Tao, and J. Shao, Application of porous materials for the flow field in polymer electrolyte membrane fuel cells, J. Power Sources, 492, 229664 (2021). https://doi.org/10.1016/j.jpowsour.2021.229664
  32. J. Kim and J. Kim, Metal foam flow field effect on PEMFC performance, Appl. Chem. Eng., 32, 442-448 (2021). https://doi.org/10.14478/ACE.2021.1053