Acknowledgement
이 논문은 산업통상자원부가 지원한 '이전공공기관연계 육성사업'으로 지원을 받아 수행된 연구 결과입니다[과제명:전지·ESS기반 에너지산업 혁신생태계 구축사업(P0002068)]. 이 연구는 2020년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임(20011633).
References
- Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Appl. Energy, 88, 981-1007 (2011). https://doi.org/10.1016/j.apenergy.2010.09.030
- G. Wang, Y. Yu, H. Liu, C. Gong, S. Wen, X. Wang, and Z. Tu, Progress on design and development of polymer electrolyte membrane fuel cell systems for vehicle applications: A review, Fuel Process. Technol., 179, 203-228 (2018). https://doi.org/10.1016/j.fuproc.2018.06.013
- S. Rodosik, J. P. Poirot-Crouvezier, and Y. Bultel, Simplified anode architecture for PEMFC systems based on alternative fuel feeding: Experimental characterization and optimization for automotive applications, Int. J. Hydrog. Energy, 45, 19720-19732 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.014
- Z. Huang, Q. Jian, and J. Zhao, Experimental study on improving the dynamic characteristics of open-cathode PEMFC stack with dead-end anode by condensation and circulation of hydrogen, Int. J. Hydrog. Energy, 45, 19858-19868 (2020). https://doi.org/10.1016/j.ijhydene.2020.05.108
- J. C. Kurnia, A. P. Sasmito, and T. Shamim, Advances in proton exchange membrane fuel cell with dead-end anode operation: A review, Appl. Energy, 252, 113416 (2019) https://doi.org/10.1016/j.apenergy.2019.113416
- D. F. M. Santos, R. B. Ferreira, D. S. Falcao, and A. Pinto, Evaluation of a fuel cell system designed for unmanned aerial vehicles, Energy, 253, 124099 (2022). https://doi.org/10.1016/j.energy.2022.124099
- I. S. Han, J. Jeong, and H. K. Shin, PEM fuel-cell stack design for improved fuel utilization, Int. J. Hydrog. Energy, 38, 11996-12006 (2013). https://doi.org/10.1016/j.ijhydene.2013.06.136
- Y. Lee, B. Kim, and Y. Kim, An experimental study on water transport through the membrane of a PEFC operating in the dead-end mode, Int. J. Hydrog. Energy, 34, 7768-7779 (2009). https://doi.org/10.1016/j.ijhydene.2009.07.010
- Q. Meyer, S. Ashton, S. Torija, C. Gurney, P. Boillat, M. Cochet, E. Engebretsen, D. P. Fiegan, P. Adcock, P. R. Shearing, and D. J. L. Brett, Nitrogen blanketing and hydrogen starvation in dead-ended-anode polymer electrolyte fuel cells revealed by hydro-electro-thermal analysis, Electrochim. Acta, 203, 198-205 (2016). https://doi.org/10.1016/j.electacta.2016.04.018
- B. Chen, Y. Cai, J. Shen, Z. Tu, and S. H. Chan, Performance degradation of a proton exchange membrane fuel cell with dead-ended cathode and anode, Appl. Thermal Eng., 132, 80-86 (2018). https://doi.org/10.1016/j.applthermaleng.2017.12.078
- Y. Yang, X. Zhang, L. Guo, and H. Liu, Overall and local effects of operating conditions in PEM fuel cells with dead-ended anode, Int. J. Hydrog. Energy, 42, 4690-4698 (2017). https://doi.org/10.1016/j.ijhydene.2016.08.091
- S. Abbou, J. Dillet, D. Spernjak, R. Mukundan, R. L. Borup, G. Maranzana, and O. Lottin, High potential excursions during PEM fuel cell operation with dead-ended anode, J. Electrochem. Soc., 162 (10), F1212-F1220 (2015). https://doi.org/10.1149/2.0511510jes
- T. Matsuura, J. Chen, J. B. Siegel, and A. G. Stefanopoulou, Degradation phenomena in PEM fuel cell with dead-ended anode, Int. J. Hydrog. Energy, 38, 11346-11356 (2013). https://doi.org/10.1016/j.ijhydene.2013.06.096
- J. Yu, Z. Jiang, M. Hou, D. Liang, Y. Xiao, M. Dou, Z. Shao, and B. Yi, Analysis of the behavior and degradation in proton exchange membrane fuel cells with a dead-ended anode, J. Power Sources, 246, 90-94 (2014). https://doi.org/10.1016/j.jpowsour.2013.06.163
- S. Abbou, J. Dillet, G. Maranzana, S. Didierjean, and O. Lottin, Local potential evolutions during proton exchange membrane fuel cell operation with dead-ended anode - Part I: Impact of water diffusion and nitrogen crossover, J. Power Sources, 340, 337-346 (2017). https://doi.org/10.1016/j.jpowsour.2016.11.079
- Y. Yang, X. Zhang, L. Guo, and H. Liu, Local degradation in proton exchange membrane fuel cells with dead-ended anode, J. Power Sources, 477, 229021 (2020). https://doi.org/10.1016/j.jpowsour.2020.229021
- J. Chen, J. B. Siegel, and A. G. Stefanopoulou, Optimization of purge cycle for dead-ended anode fuel cell operation, Int. J. Hydrog. Energy, 38, 5092-5105 (2013). https://doi.org/10.1016/j.ijhydene.2013.02.022
- Z. Liu, J. Chen, H. Liu, C. Yan, Y. Hou, Q. He, J. Zhang, and D. Hissel, Anode purge management for hydrogen utilization and stack durability improvement of PEM fuel cell systems, Appl. Energy, 275, 115110 (2020) https://doi.org/10.1016/j.apenergy.2020.115110
- B. Chen, Z. Tu, and S. H. Chan, Performance degradation and recovery characteristics during gas purging in a proton exchange membrane fuel cell with a dead-ended anode, Appl. Therm. Eng., 129, 968-978 (2018). https://doi.org/10.1016/j.applthermaleng.2017.10.102
- Y. F. Lin and Y. S. Chen, Experimental study on the optimal purge duration of a proton exchange membrane fuel cell with a dead-ended anode, J. Power Sources, 340, 176-182 (2017). https://doi.org/10.1016/j.jpowsour.2016.11.039
- M. Steinberger, J. Geiling, R. Oechsner, and L. Freya, Anode recirculation and purge strategies for PEM fuel cell operation with diluted hydrogen feed gas, Appl. Energy, 232, 113416 (2018).
- J. Shen, Z. Tu, and S. H. Chan, Effect of gas purging on the performance of a proton exchange membrane fuel cell with dead-ended anode and cathode, Int. J. Energy Res., 45, 14813-14823 (2021). https://doi.org/10.1002/er.6757
- R. Omrani, S. S. Mohammadi, Y. Mafinejad, B. Paul, R. Islam, and B. Shabani, PEMFC purging at low operating temperatures: An experimental approach, Int. J. Energy Res., 43, 7496-7507 (2019).
- J. Zhao, Q. Jian, Z. Huang, L. Luo, and B. Huang, Experimental study on water management improvement of proton exchange membrane fuel cells with dead-ended anode by periodically supplying fuel from anode outlet, J. Power Sources, 435, 226775 (2019). https://doi.org/10.1016/j.jpowsour.2019.226775
- Y. Wu, J. I. S. Cho, T. P. Neville, Q. Meyer, R. Ziesche, P. Boillat, M. Cochet, P. R. Shearing, and D. J. L. Brett, Effect of serpentine flow-field design on the water management of polymer electrolyte fuel cells: An in-operando neutron radiography study, J. Power Sources, 399, 254-263 (2018). https://doi.org/10.1016/j.jpowsour.2018.07.085
- A. Soopee, A. P. Sasmito, and T. Shamim, Water droplet dynamics in a dead-end anode proton exchange membrane fuel cell, App. Energy, 233-234, 300-311 (2019). https://doi.org/10.1016/j.apenergy.2018.10.001
- J. Zhao, Q. Jian, and Z. Huang, Visualization study on enhancing water transport of proton exchange membrane fuel cells with a dead-ended anode by generating fluctuating flow at anode compartment, Energy Convers. Manag., 206, 112477 (2020). https://doi.org/10.1016/j.enconman.2020.112477
- M. E. Kim and Y. J. Sohn, Different flow fields, operation modes and designs for proton exchange membrane fuel cells with dead-ended anode, Int. J. Hydrog. Energy, 43, 1769-1780 (2018). https://doi.org/10.1016/j.ijhydene.2017.10.137
- M. E. Kim and Y. J. Sohn, Study on polymer electrolyte fuel cells with nonhumidification using metal foam in dead-ended operation, Energies, 13, 1238 (2020). https://doi.org/10.3390/en13051238
- B. Chen, Q. Liu, C. Zhang, Y. Liu, J. Shen, and Z. Tu, Numerical study on water transfer characteristics under joint effect of placement orientation and flow channel size for PEMFC with dead-ended anode, Energy, 254, 1234365 (2022).
- Y. Zhang, Y. Tao, and J. Shao, Application of porous materials for the flow field in polymer electrolyte membrane fuel cells, J. Power Sources, 492, 229664 (2021). https://doi.org/10.1016/j.jpowsour.2021.229664
- J. Kim and J. Kim, Metal foam flow field effect on PEMFC performance, Appl. Chem. Eng., 32, 442-448 (2021). https://doi.org/10.14478/ACE.2021.1053