DOI QR코드

DOI QR Code

Biological Treatment of Nutrients and Heavy Metals in Synthetic Wastewater Using a Carrier Attached to Rhodobacter blasticus

  • Kim, Deok-Won (Department of Environmental and Biological Chemistry, Chungbuk National University) ;
  • Park, Ji-Su (Field Quality Control Gimcheon part, Doosan Corporation Electro-Materials) ;
  • Oh, Eun-Ji (Water and Land Research Group/Division for Natural Environment, Korea Environment Institute) ;
  • Yoo, Jin (Indoor Environment Division, Incheon Research Institute of Public Health and Environment) ;
  • Kim, Deok-Hyeon (National Institute of Environmental Research) ;
  • Chung, Keun-Yook (Department of Environmental and Biological Chemistry, Chungbuk National University)
  • Received : 2022.10.03
  • Accepted : 2022.11.27
  • Published : 2022.12.10

Abstract

The removal efficiencies of nutrients (N and P) and heavy metals (Cu and Ni) by Rhodobacter blasticus and R. blasticus attached to polysulfone carriers, alginate carriers, PVA carriers, and PVA + zeolite carriers in synthetic wastewater were compared. In the comparison of the nutrient removal efficiency based on varying concentrations (100, 200, 500, and 1000 mg/L), R. blasticus + polysulfone carrier treatment showed removal efficiencies of 98.9~99.84% for N and 96.92~99.21% for P. The R. blasticus + alginate carrier treatment showed removal efficiencies of 88.04~97.1% for N and 90.33~97.13% for P. The R. blasticus + PVA carrier treatment showed removal efficiencies of 18.53~44.25% for N and 14.93~43.63% for P. The R. blasticus + PVA + zeolite carrier treatment showed removal efficiencies of 26.65~64.33% for N and 23.44~64.05% for P. In addition, at the minimum inhibitory concentration of heavy metals, R. blasticus (dead cells) + polysulfone carrier treatment showed removal efficiencies of 7.77% for Cu and 12.19% for Ni. Rhodobacter blasticus (dead cells) + alginate carrier treatment showed removal efficiencies of 25.83% for Cu and 31.12% for Ni.

Keywords

Acknowledgement

This study was supported by the National Research Foundation of Korea (2016RID1AB03931634).

References

  1. S. G. Kang and D. S. Kim, Studies on the characteristics of the methylene blue dye adsorption in waste water using the NaOH modified coffee waste, J. Korea Soc. Waste Manag., 37, 301-309 (2020). https://doi.org/10.9786/kswm.2020.37.5.301
  2. K. Azam, N. Shezad, I. Shafiq, P. Akhter, F. Akhtar, F. Jamil, S. Shafique, Y. K. Park, and M. Hussain, A review on activated carbon modifications for the treatment of wastewater containing anionic dyes, Chemosphere, 306, 135566 (2022). https://doi.org/10.1016/j.chemosphere.2022.135566
  3. T. Cai, S. Y. Park, and Y. Li, Nutrient recovery from wastewater streams by microalgae: Status and prospects, Renew. Sustain. Energy Rev., 19, 360-369 (2013). https://doi.org/10.1016/j.rser.2012.11.030
  4. B. Fridrich, D. Krcmar, B. Dalmacija, J. Molnar, V. Pesic, M. Kragulj, and N. Varga, Impact of wastewater from pig farm lagoons on the quality of local groundwater, Agric. Water Manage., 135, 40-53 (2014). https://doi.org/10.1016/j.agwat.2013.12.014
  5. X. R. Dai and V. Blanes-Vidal, Emissions of ammonia, carbon dioxide, and hydrogen sulfide from swine wastewater during and after acidification treatment: Effect of pH, mixing and aeration, J. Environ. Manag., 115, 147-154 (2013). https://doi.org/10.1016/j.jenvman.2012.11.019
  6. G. Crini and E. Lichtfouse, Advantages and disadvantages of techniques used for wastewater treatment, Environ. Chem. Lett., 17, 145-155 (2019). https://doi.org/10.1007/s10311-018-0785-9
  7. Y. M. Song, An Oxidation Treatment of wastewater containing reducing substances, J. Korea Soc. Waste Manag., 37, 188-193 (2020). https://doi.org/10.9786/kswm.2020.37.3.188
  8. H. Gu, W. Xie, A. Du, D. Pan, and Z. Guo, Overview of electro-catalytic treatment of antibiotic pollutants in wastewater, Catal. Rev., 1-51 (2021).
  9. M. Shabir, M. Yasin, M. Hussain, I. Shafiq, P. Akhter, A. S. Nizami, B. H. Jeon, and Y. K. Park, A review on recent advances in the treatment of dye-polluted wastewater, J. Ind. Eng. Chem., 112, 1-19 (2022). https://doi.org/10.1016/j.jiec.2022.05.013
  10. S. H. Yang and Y. H. Kim, Application of ferrate (VI) for selective removal of cyanide from plated wastewater, Clean Technol., 27, 168-173 (2021). https://doi.org/10.7464/KSCT.2021.27.2.168
  11. J. Y. An, B. K. Lee, B. H. Jeon, and M. K. Ji, A management plan of wastewater sludge to reduce the exposure of microplastics to the ecosystem, Clean Technol., 27, 1-8 (2021). https://doi.org/10.7464/KSCT.2021.27.1.1
  12. S. E. Bailey, T. J. Olin, R. M. Bricka, and D. D. Adrian, A review of potentially low-cost sorbents for heavy metals, Water Res., 11, 2469-2479 (1999).
  13. M. Kobayashi and Y. T. Tchan, Treatment of industrial waste solutions and production of useful by-products using a photosynthetic bacterial method, Water Res., 7, 1219-1224 (1973). https://doi.org/10.1016/0043-1354(73)90075-4
  14. Q. Zhou, G. Zhang, X. Zheng, and G. Liu, Biological treatment of high NH4+-N wastewater using an ammonia-tolerant photosynthetic bacteria strain (ISASWR2014), Chin. J. Chem. Eng., 21, 1712-1715 (2015).
  15. A. Buccolieri, F. Italiano, A. Dell'Atti, G. Buccolieri, L. Giotta, A. Agostiano, F. Milano, and M. Trotta, Testing the photosynthetic bacterium Rhodobacter sphaeroides as heavy metal removal tool, Ann. Chim., 96, 195-203 (2006). https://doi.org/10.1002/adic.200690019
  16. Y. Feng and Y. Yu, Biosorption and bioreduction of trivalent aurum by photosynthetic bacteria Rhodobacter capsulatus, Curr. Microbiol., 55, 402-408 (2007). https://doi.org/10.1007/s00284-007-9007-6
  17. B. Szatkowska and B. Paulsrud, The anammox process for nitrogen removal from wastewater-achievements and future challenges, VANN, 49, 186-194 (2014).
  18. J. W. Mulder, J. O. J. Duin, J. Goverde, W. G. Poiesz, H. M. Van Veldhuizen, R. Van Kempen, and P. Roeleveld, Full-scale experience with the SHARON process through the eyes of the operators, Water Environ. Found., 2006, 5256-5270 (2006).
  19. A. G. Capodaglio, P. Hlavinek, and M. Raboni, Advances in wastewater nitrogen removal by biological processes: state of the art review, Revista Ambiente Agua, 11, 250-267 (2016). https://doi.org/10.4136/ambi-agua.1772
  20. J. S. Kim, D. C. Shin, J. T. Park, H. M. Jeong, X. Y. Ren, and C. H. Park, Treatment of nitrogen in recycle water using immobilized microbial media, J. Korean Soc. Environ. Eng., 41, 191-195 (2019). https://doi.org/10.4491/ksee.2019.41.4.191
  21. Y. S. Jo and Y. S. Jang, A study to analyze the effect of food waste leachate (FWL) injection on the acceleration of waste bio-compression, J. Korea Soc. Waste Manag., 37, 211-218 (2020). https://doi.org/10.9786/kswm.2020.37.3.211
  22. J. W. Costerton, K. J. Cheng, G. G. Geesey, T. I. Ladd, J. C. Nickel, M. Dasgupta, and T. J. Marrie, Bacterial biofilms in nature and disease, Annu. Rev. Microbiol., 41, 435-464 (1987). https://doi.org/10.1146/annurev.mi.41.100187.002251
  23. V. Lazarova and J. Manem, Biofilm characterization and activity analysis in water and wastewater treatment, Water Res., 29, 2227-2245 (1955). https://doi.org/10.1016/0043-1354(95)00054-O
  24. H. Seo, M. Lee, and S. Wang, Development of a mathematical model for simulating removal mechanisms of heavy metals using biocarrier beads, J. Soil Groundw. Environ., 18, 8-18 (2013).
  25. P. Y. Yang, T. Cai, and M. L. Wang, Immobilized mixed microbial cells for wastewater treatment, Biol. Wastes, 23, 295-312 (1988). https://doi.org/10.1016/0269-7483(88)90017-1
  26. J. E. Kim, Preparation of Polymer Coated-Alginate Beads Entrapped Quorum Quenching Bacteria for Biofouling Control in MBR, PhD dissertation, Seoul National University, Seoul Korea (2014).
  27. I. H. Kim, J. H. Choi, J. O. Joo, Y. K. Kim, J. W. Choi, and B. K. Oh, Development of a microbe-zeolite carrier for the effective elimination of heavy metals from seawater, J. Microbiol. Biotechnol., 25, 1542-1546 (2015). https://doi.org/10.4014/jmb.1504.04067
  28. Q. Chen, J. Li, M. Liu, H. Sun, and M. Bao, Study on the biodegradation of crude oil by free and immobilized bacterial consortium in marine environment, PloS One, 12, e0174445 (2017). https://doi.org/10.1371/journal.pone.0174445
  29. S. Chaikasem, A. Abeynayaka, and C. Visvanathan, Effect of polyvinyl alcohol hydrogel as a biocarrier on volatile fatty acids production of a two-stage thermophilic anaerobic membrane bioreactor, Bioresour. Technol., 168, 100-105 (2014). https://doi.org/10.1016/j.biortech.2014.04.023
  30. I. H. Kim, J. H. Choi, J. O. Joo, Y. K. Kim, J. W. Choi, and B. K. Oh, Development of a microbe-zeolite carrier for the effective elimination of heavy metals from seawater, J. Microbiol. Biotechnol., 25, 1542-1546 (2015). https://doi.org/10.4014/jmb.1504.04067
  31. A. Khalid, A. A. Al-Juhani, O. C. Al-Hamouz, T. Laoui, Z. Khan, and M. A. Atieh, Preparation and properties of nanocomposite polysulfone/multi-walled carbon nanotubes membranes for desalination, Desalination, 367, 134-144 (2015). https://doi.org/10.1016/j.desal.2015.04.001
  32. T. A. Davis, B. Volesky, and A. Mucci, A review of the biochemistry of heavy metal bio-sorption by brown algae, Water Res., 37, 4311-4330 (2003). https://doi.org/10.1016/S0043-1354(03)00293-8
  33. E. Romera, F. Gonzalez, A. Ballester, M. L. Blazquez, and J. A. Munoz, Biosorption with algae: A statistical review, Crit. Rev. Biotechnol., 26, 223-235 (2006). https://doi.org/10.1080/07388550600972153
  34. O. Smidsrod and G. Skja, Alginate as immobilization matrix for cells, Trends Biotechnol., 8, 71-78 (1990). https://doi.org/10.1016/0167-7799(90)90139-O
  35. S. K. Bajpai and S. Sharma, Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions, React. Funct. Polym., 59, 129-140 (2004). https://doi.org/10.1016/j.reactfunctpolym.2004.01.002
  36. A. Blandino, M. Macias and D. Cantero, Glucose oxidase release from calcium alginate gel capsules, Enzyme Microb., 27, 319-324 (2000). https://doi.org/10.1016/S0141-0229(00)00204-0
  37. N. E. Simpson, C. L. Stabler, C. P. Simpson, A. Sambanis, and I. Constantinidis, The role of the CaCl2-guluronic acid interaction on alginate encapsulated βTC3 cells, Biomaterials, 25, 2603-2610 (2004). https://doi.org/10.1016/j.biomaterials.2003.09.046
  38. Y. Zhang, D. Kogelnig, C. Morgenbesser, A. Stojanovic, F. Jirsa, I. Lichtscheidl-Schultz, R. Krachler, Y. Li, and B. K. Keppler, Preparation and characterization of immobilized [A336][MTBA] in PVA-alginate gel beads as novel solid-phase extractants for an efficient recovery of Hg (II) from aqueous solutions, J. Hazard. Mater., 196, 201-209 (2011). https://doi.org/10.1016/j.jhazmat.2011.09.018
  39. T. Kobayashi, M. Yoshimoto, and K. Nakao, Preparation and characterization of immobilized chelate extractant in PVA gel beads for an efficient recovery of copper (II) in aqueous solution, Ind. Eng. Chem. Res., 49, 2010 (2010).
  40. J. H. Yoon, D. C. Shin, H. S. Kim, and C. H. Park, Fabrication and physical property analysis of PVA, PEG modified polymer immobilized media, Korean Soc Urban Environ.., 18, 95-100 (2018). https://doi.org/10.33768/ksue.2018.18.1.95
  41. K. Yang, X. Zhang, C. Chao, B. Zhang, and J. Liu, In-situ preparation of NaA zeolite/chitosan porous hybrid beads for removal of ammonium from aqueous solution, Carbohydr. Polym., 107, 103-109 (2014). https://doi.org/10.1016/j.carbpol.2014.02.001
  42. H. Faghihian, M. Iravani, M. Moayed, and M. Ghannadi-Maragheh, Preparation of a novel PAN-zeolite nanocomposite for removal of Cs+ and Sr2+ from aqueous solutions: Kinetic, equilibrium, and thermodynamic studies, Chem. Eng. J., 222, 41-48 (2013). https://doi.org/10.1016/j.cej.2013.02.035
  43. R. S. Bai and T. E. Abraham, Studies on chromium(VI) adsorption-desorption using immobilized fungal biomass, Biores. Technol., 87(1), 17-26 (2003). https://doi.org/10.1016/S0960-8524(02)00222-5
  44. Z. Aksu and F. Gonen, Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves, Process Biochem., 39, 599-613 (2004). https://doi.org/10.1016/S0032-9592(03)00132-8
  45. N. Lazaro, A. L. Sevilla, S. Morales, and A. M. Marques, Heavy metal biosorption by gellan gum gel beads, Water Res., 37, 2118-2126 (2003). https://doi.org/10.1016/S0043-1354(02)00575-4
  46. A. C. Texier, Y. Andres, C. Faur-Brasquet, and P. Le Cloirec, Fixed-bed study for lanthanide (La, Eu, Yb) ions rem Chemosphere oval from aqueous solutions by immobilized Pseudomonas aeruginosa: experimental data and modelization, Chemosphere, 47, 333-342 (2002). https://doi.org/10.1016/S0045-6535(01)00244-2
  47. D. H. Kim, E. S. Lom, and W. K. Cho, Design of dual functional surfaces: Non-biofouling and antimicrobial activities, Polym. Sci. Technol., 25, 312-318 (2014).
  48. M. Suhaimi, J. Liessens, and W. Verstraete, NH+/4-N assimilation by Rhodobacter capsulatus ATCC 23782 grown axenically and non-axenically in N and C rich media, J. Appl. Microbiol., 62, 53-64 (1987). https://doi.org/10.1111/j.1365-2672.1987.tb02380.x
  49. W. R. Hill, S. E. Fanta, and B. J. Roberts, Quantifying phosphorus and light effects in stream algae, Limnol. Oceanogr., 54, 368-380 (2009). https://doi.org/10.4319/lo.2009.54.1.0368
  50. T. Hulsen, D. J. Batstone, and J. Keller, Phototrophic bacteria for nutrient recovery from domestic wastewater, Water Res., 50, 18-26 (2014). https://doi.org/10.1016/j.watres.2013.10.051
  51. H. K. Shon, S. Vigneswaran, I. S. Kim, J. Cho, and H. H. Ngo, Fouling of ultrafiltration membrane by effluent organic matter: A detailed characterization using different organic fractions in wastewater, J. Membr. Sci., 278, 232-238 (2006). https://doi.org/10.1016/j.memsci.2005.11.006
  52. C. K. Yeom, S. H. Lee, and J. M. Lee, Pervaporative permeations of homologous series of alcohol aqueous mixtures through a hydrophilic membrane, J. Appl. Polym. Sci., 79, 703-713 (2001). https://doi.org/10.1002/1097-4628(20010124)79:4<703::AID-APP150>3.0.CO;2-O
  53. R. Y. M. Huang, R. Pal, and G. Y. Moon, Characteristics of sodium alginate membranes for the pervaporation dehydration of ethanol-water and isopropanol-water mixtures, J. Membr. Sci., 160, 101-113 (1999). https://doi.org/10.1016/S0376-7388(99)00071-X
  54. H. Ahn, H. Lee, S. B. Lee, and Y. Lee, Dehydration of TFEA/water mixture through hydrophilic zeolite membrane by pervaporation, J. Membr. Sci., 291, 46-52 (2007). https://doi.org/10.1016/j.memsci.2006.12.033
  55. H. S. Shim, C. W. Jung, H. J. Son, and I. S. Sohn, Effect of membrane materials on membrane fouling and membrane washing, Korean Chem. Eng. Res., 45, 608-739 (2007).
  56. M. H. Lee, J. Y. Lee, and S. K. Wang, Remediation of heavy metal contaminated groundwater by using the biocarrier with dead Bacillus sp. B1 and polysulfone, Econ. Environ. Geol., 43, 555-564 (2010).
  57. Y. S. Lim and B. J. Yoo, Effects of average molecular weights, their concentrations, Ca++ and Mg++ on hydrophobicity of solution of Na-alginates prepared from sea tangle Saccharina japonicus produced in east coast of Korea, Korean J. Fish. Aquat. Sci., 51, 542-548 (2018). https://doi.org/10.5657/KFAS.2018.0542
  58. Z. Huang, H. M. Guan, W. L. Tan, X. Y. Qiao, and S. Kulprathipanja, Pervaporation study of aqueous ethanol solution through zeolite-incorporated multilayer poly(vinyl alcohol) membranes: Effect of zeolites, J. Membr. Sci., 276, 260-271 (2006). https://doi.org/10.1016/j.memsci.2005.09.056
  59. M. A. Pereira, M. M. Alves, J. Azeredo, M. Mota, and R. Oliveira, Influence of physico-chemical properties of porous microcarriers on the adhesion of an anaerobic consortium, J. Ind. Microbiol. Biotechnol., 24, 181-186 (2000). https://doi.org/10.1038/sj.jim.2900799
  60. B. H. Jeong, E. M. Hoek, Y. Yan, A. Subramani, X. Huang, G. Hurwitz, A. K. Ghosh, and A. Jawor, Interfacial polymerization of thin film nanocomposites: A new concept for reverse osmosis membranes, J. Membr. Sci., 294, 1-7 (2007). https://doi.org/10.1016/j.memsci.2007.02.025
  61. C. H. Han and M. G. Lee, Removal of Cs and Sr ions by absorbent immobilized zeolite with PVA, J. Korean Soc. Environ. Eng., 37, 450-457 (2015). https://doi.org/10.4491/KSEE.2015.37.8.450
  62. L. Giotta, A. Agostiano, F. Italiano, F. Milano, and M. Trotta, Heavy metal ion influence on the photosynthetic growth of Rhodobacter sphaeroides, Chemosphere, 62, 1490-1499 (2006). https://doi.org/10.1016/j.chemosphere.2005.06.014
  63. H. Seki, A. Suzuki, and S. I. Mitsueda, Biosorption of heavy metal ions on Rhodobacter sphaeroides and Alcaligenes eutrophus H16, J. Coll. Interf. Sci., 197, 185-190 (1998). https://doi.org/10.1006/jcis.1997.5284
  64. E. V. Ariskina, A. V. Vatsurina, N. E. Suzina, and E. Y. Gavrish, Cobalt- and chromium-containing inclusions in bacterial cells, Microbiology, 73, 159-162 (2004). https://doi.org/10.1023/B:MICI.0000023983.14322.91
  65. Y. S. Lim and B. J. Yoo, Effects of average molecular weights, their concentrations, Ca++ and Mg++ on hydrophobicity of solution of Na-alginates prepared from sea tangle Saccharina japonicus produced in east coast of Korea, Korean J. Fish. Aquat. Sci., 51, 542-548 (2018). https://doi.org/10.5657/KFAS.2018.0542
  66. F. A. A. Al-Rub, M. H. El-Naas, F. Benyahia, and I. Ashour, Biosorption of nickel on blank alginate beads, free and immobilized algal cells, Process Biochem., 39, 1767-1773 (2004). https://doi.org/10.1016/j.procbio.2003.08.002