DOI QR코드

DOI QR Code

Hard Coating Materials Using Copolymers of 2,5-dichlorobenzophenone and 1,4-dichlorobenzene

  • Shin, Min Jae (Department of Cosmetics and Biotechnology, Semyung University)
  • Received : 2022.10.26
  • Accepted : 2022.11.24
  • Published : 2022.12.10

Abstract

In this study, 2,5-dichlorobenzophenone was synthesized as a monomer using 1,4-dichlorbenzene, and subsequently, copolymers of benzoyl-p-phenylene and p-phenylene were prepared. The average molecular weight was improved using the low-molecular-weight polymer cutting method. The average molecular weight and glass transition temperature of the synthesized polymers were estimated. The as-prepared polymer was used as a hard coating material, and the coating was conducted on a poly(methyl methacrylate) plate. Furthermore, physical properties of the coatings, such as pencil hardness, adhesive strength, and abrasion resistance, were estimated. As the amount of p-phenylene in the copolymer increased, pencil hardness and abrasion resistance improved. The amount of p-phenylene in the copolymer can be increased to 30 mol% in order to increase the hardness of the coating, and the adhesive strength was insufficient for the copolymers with p-phenylene ratio greater than 35 mol%.

Keywords

References

  1. K. Baskaran, M. Ali, K. Gingrich, D. L. Porter, S. Chong, B. J.Riley, C. W. Peak, S. E. Naleway, I. Zharov, and K. Carlson, Sol-gel derived silica: A review of polymer-tailored properties for energy and environmental applications, Micropor. Mesopor. Mat., 336, 111874 (2022). https://doi.org/10.1016/j.micromeso.2022.111874
  2. C. M. Choi, J. Jin, D. Shin, Y. H. Kim, J. H. Ko, H. G. Im, J. Jang, D. Jang, and B. S. Bae, Flexible hard coating: Glass-like wear resistant, yet plastic-like compliant, transparent protective coating for foldable displays, Adv. Mater., 29, 1700205 (2017). https://doi.org/10.1002/adma.201700205
  3. V. Purcar, V. Raditoiu, A. Raditoiu, R. Manea, F. M. Raduly, G. C. Ispas, A. N. Frone, C. A. Nicolae, R. A. Gabor, M. Anastasescu, H. Stroescu, and S. Caprarescu, Preparation and characterization of some sol-gel modified silica coatings deposited on polyvinyl chloride (PVC) substrates, Coatings, 11, 11 (2021). https://doi.org/10.3390/coatings11010011
  4. Y. J. Shin, M. H. Oh, Y. S. Yoon, and J. S. Shin, Hard coatings on polycarbonate plate by sol-gel reactions of melamine derivative, PHEMA, and silicates, Polym. Eng. Sci., 48, 1289-1295 (2008). https://doi.org/10.1002/pen.21091
  5. Y. J. Shin, D. H. Yang, M. H. Oh, Y. S. Yoon, and J. S. Shin, Hard coatings on polycarbonate plate by sol-gel reactions of melamine derivative, poly(vinyl alcohol), and silicates, J. Ind. Eng. Chem., 15, 238-242 (2009). https://doi.org/10.1016/j.jiec.2008.09.009
  6. H. Y. Shin, M. S. Cha, S. H. Hong, T. H. Kim, D. S. Yang, S. G. Oh, J. Y. Lee, and Y. T. Hong, Poly(p-phenylene)-based membrane materials with excellent cell efficiencies and durability for use in vanadium redox flow batteries, J. Mater. Chem. A, 5, 12285-12296 (2017). https://doi.org/10.1039/C7TA03131A
  7. S. A. Brinckmann, N. Lakhera, C. M. Laursen, C. Yakacki, and C. P. Frick, Characterization of poly(para-phenylene)-MWCNT solvent-cast composites, AIMS Mater. Sci., 5, 301-319 (2018). https://doi.org/10.3934/matersci.2018.2.301
  8. A. Abdulkarim, F. Hinkel, D. Jansch, J. Freudenberg, F. E. Golling, and K. Mullen, A new solution to an old problem: Synthesis of unsubstituted poly(para-phenylene), J. Am Chem. Soc., 138, 16208-16211 (2016). https://doi.org/10.1021/jacs.6b10254
  9. S. E. Morgan, R. Misra, and P. Jones, Nanomechanical and surface frictional characteristics of a copolymer based on benzoyl-1,4-phenylene and 1,3-phenylene, Polymer, 47, 2865-2873 (2006). https://doi.org/10.1016/j.polymer.2006.02.025
  10. V. Chaturvedi, S. Tanaka, and K. Kaeriyama, Preparation of poly (p-phenylene) via a new precursor route, Macromolecules, 26, 2607-2611 (1993). https://doi.org/10.1021/ma00062a032
  11. M. Remmers, B. Muller, K. Martin, and H. J. Rader, Poly(p-phenylene)s. Synthesis, optical properties, and quantitative analysis with HPLC and MALDI-TOF mass spectrometry, Macromolecules, 32, 1073-1079 (1999). https://doi.org/10.1021/ma981260s
  12. T. Yammamoto, M. Abe, Y. Takahashi, K. Kawata, and K. Kubota, Preparation of polyphenylenes with higher molecular weights via dehalogenative polycondensation using magnesium and aggregating property of the polymer in solutions, Polym. J., 35, 603-607 (2003). https://doi.org/10.1295/polymj.35.603
  13. T. Yammamoto, B. Wu, B. K. Choi, and K. Kubota, Soluble copolymers of p-phenylene and m-phenylene. Their basic properties, Chem. Lett., 29, 720-721 (2000). https://doi.org/10.1246/cl.2000.720
  14. H. Nederstedt and P. Jannasch, Synthesis, phase structure, and ion conductivity of poly(p-phenylene) functionalized with lithium trifluoromethanesulfonimide and tetra(ethylene oxide) side chains, ACS Appl. Energy Mater., 3, 9066-9075 (2020). https://doi.org/10.1021/acsaem.0c01455
  15. H. Nederstedt and P. Jannasch, Poly(p-phenylene)s tethered with oligo(ethylene oxide): Synthesis by Yamamoto polymerization and properties as solid polymer electrolytes, Polym. Chem., 11, 2418-2429 (2020). https://doi.org/10.1039/d0py00115e
  16. M. Abe and T. Yamamoto, Modification of soluble polyphenylene by Friedel-Crafts reactions: Introduction of benzyl and toluoyl groups to the polyphenylene and effects of the introduced group on optical properties of the polymer, Synth. Met., 156, 1118-1122 (2006). https://doi.org/10.1016/j.synthmet.2006.07.004
  17. Y. H. Ha, C. E. Scott, and E. L. Thomas, Miscible blends of poly(benzoyl paraphenylene) and polycarbonate, Polymer, 42, 6463- 6472 (2001). https://doi.org/10.1016/S0032-3861(01)00159-8
  18. M. Connolly, F. E. Karasz, and M. S. Trimmer, Viscoelastic and dielectric relaxation behavior of substituted poly (p-phenylenes), Macromolecules, 28, 1872-1881 (1995). https://doi.org/10.1021/ma00110a022
  19. Y. Wang and R. P. Quirk, Synthesis and characterization of poly(benzoyl-1,4-phenylene)s. 2. Catalyst coligand effects on polymer properties, Macromolecules, 28, 3495-3501 (1995). https://doi.org/10.1021/ma00114a001
  20. R. A. Vaia, R. Krishnamoorti, C. Benner, and M. Trimer, Chain conformation of rod-like polymers in the melt: Small-angle neutron scattering of poly(benzoyl paraphenylene), J. Polym, Sci., Polym. Phys., 36, 2449-2459 (1998). https://doi.org/10.1002/(SICI)1099-0488(19980930)36:13<2449::AID-POLB19>3.0.CO;2-3
  21. G. P. Simon, M. S. Ardi, A. A. Goodwin, M. D. Zipper, S. R. Andrews, S. Shinton, G. Williams, M. Galop, and M. Trimmer, Molecular mobility of substituted poly(p-phenylenes) characterized by a range of polymer relaxation techniques, J. Polym, Sci. Polym. Phys., 36, 1465-1481 (1998). https://doi.org/10.1002/(SICI)1099-0488(19980715)36:9<1465::AID-POLB5>3.0.CO;2-J
  22. D. Dean, M. Husband, and M. Trimmer, Time-temperature-dependent behavior of a substituted poly(paraphenylene): Tensile, creep, and dynamic mechanical properties in the glassy state, J. Polym, Sci., Polym. Phys., 70, 2971-2979 (1998).
  23. R. W. Phillips, V. V. Sheares, E. T. Samulski, and J. M. DeSimone, Isomeric poly(benzophenone)s: Synthesis of highly crystalline poly (4,4'-benzophenone) and amorphous poly(2,5-benzophenone), a soluble poly(p-phenylene) derivative, Macromolecules, 27, 2354-2356 (1994). https://doi.org/10.1021/ma00086a064
  24. Y. R. Shin, Y. J. Shin, D. H. Yang, M. H. Oh, Y. S. Yoon, and J. S. Shin, Hard coatings on polycarbonate plate using poly(benzoylphenylene) and its copolymers, Polymer (Korea), 32, 427-432 (2008).