DOI QR코드

DOI QR Code

Retrieval and Quality Assessment of Atmospheric Winds from the Aircraft-Based Observation Near Incheon International Airport, Korea

인천 공항 주변 고해상도 항공기 추적 정보 기반의 바람 관측자료 생산 및 품질 검증

  • Kim, Jeongmin (School of Earth and Environmental Sciences, Seoul National University) ;
  • Kim, Jung-Hoon (School of Earth and Environmental Sciences, Seoul National University)
  • 김정민 (서울대학교 지구환경과학부) ;
  • 김정훈 (서울대학교 지구환경과학부)
  • Received : 2022.09.08
  • Accepted : 2022.12.12
  • Published : 2022.12.31

Abstract

We analyzed the high-resolution wind data of Aircraft-Based Observation from the Mode-Selective Enhanced Surveillance (Mode-S EHS) data in Korea. For assessment of its quality, the Mode-S wind data was compared with the ECMWF ReAnalysis 5 (ERA5) reanalysis and Aircraft Meteorological Data Relay (AMDAR) data for more than 3-months from 7 May 2021 to 24 August 2021 near Incheon International Airport, Korea. Considering that the AMDAR reports are not provided by all commercial aircraft, total number of the Mode-S derived wind data with a second sampling rate was about twice larger than that of available AMDAR wind data. After the quality control procedures by removing erroneous samples, it was found that the root mean square errors (RMSEs) of the Mode-S retrieved winds are similar to that from the AMDAR winds. In particular, between 550 and 650 hPa levels, RMSE of the Mode-S (AMDAR) zonal wind against ERA5 data was about 2.3 m s-1 (1.9 m s-1), and those increased to 3.3 m s-1 (2.4 m s-1) in 200~500 hPa levels. A similar trend was found in the meridional wind, but a distinct positive mean bias of 2.16 m s-1 was observed between 875 and 1,000 hPa levels. Winds retrieved from the Mode-S also showed a good agreement directly with AMDAR data. As the Mode-S provides a large amount of data with a reliable quality, it can be useful for both data assimilation in the numerical weather prediction model and situational awareness of wind and turbulence for aviation safety in Korea.

Keywords

Acknowledgement

이 연구는 기상청 「차세대 항공교통 지원 항공기상기술개발(NARAE-Weather)」(KMI2022-00310)의 지원과 기상지진 See-At기술개발연구사업(KMI2020-01910)의 지원으로 수행되었습니다. ADS-B 자료 수신 및 저장과 관련해서 항공기상청 정보기술과의 정강아 팀장님과 차세대항공기상팀 안광득 과장님, 김진원 팀장님 및 ADS-B 자료 수집과 관련된 항공기상청 관계자분들께 감사드립니다.

References

  1. Ballish, B. A., and V. K. Kumar, 2008: Systematic differences in aircraft and radiosonde temperatures: im-plications for NWP and climate studies. Bull. Am. Meteorol. Soc., 89, 1689-1708. https://doi.org/10.1175/2008BAMS2332.1
  2. Cardinali, C., L. Isaksen, and E. Andersson, 2003: Use and impact of automated aircraft data in a global 4DVAR data assimilation system. Mon. Wea. Rev., 131, 1865-1877. https://doi.org/10.1175//2569.1
  3. Dee, D. P., and Coauthors, 2011: The ERA-interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc., 137, 553-597, doi:10.1002/qj.828.
  4. de Haan, S., and Stoffelen, A. High resolution temperature and wind observations from commercial aircraft. In: Proceedings of the 8th International Symposium on Tropospheric Profiling; 19-23 October 2009; Delft, Netherlands.
  5. de Haan, S., 2011: High-resolution wind and temperature observations from aircraft tracked by mode-S air traffic control radar. J. Geophys. Res. Atmos., 116, D10111, doi:10.1029/2010JD015264.
  6. de Haan, S., M. de Haij, and J. Sondij, 2013: The Use of a Commercial ADS-B Receiver to Derive Upper Air Wind and Temperature Observations from Mode-S EHS Information in The Netherlands. Royal Netherlands Meteorological Institute (KNMI).
  7. de Leege, A. M. P., M. M. van Paassen, and M. Mulder, 2013: Using automatic dependent surveillance-broadcast for meteorological monitoring. J. Aircr., 50, 249-261, doi:10.2514/1.C031901.
  8. Drue, C., and G. Heinemann, 2001: Airborne investigation of arctic boundary-layer fronts over the marginal ice zone of the Davis Strait. Bound. Layer Meteorol., 101, 261-292. https://doi.org/10.1023/A:1019223513815
  9. Drue, C., W. Frey, A. Hoff, and T. Hauf, 2008: Aircraft type-specific errors in AMDAR weather reports from commercial aircraft. Q. J. R. Meteorol. Soc., 134, 229-239. https://doi.org/10.1002/qj.205
  10. Drue, C., T. Hauf, and A. Hoff, 2010: Comparison of boundary-layer profiles and layer detection by AMDAR and WTR/RASS at Frankfurt airport. Bound. Layer Meteorol., 135, 407-432, doi:10.1007/s10546-010-9485-0.
  11. Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis. Q. J. R. Meteorol. Soc., 146, 1999-2049, doi:10.1002/qj.3803.
  12. Huntley, M. S. Jr., J. W. Turner, C. S. Donovan, and E. Madigan, 1995: FAA Aircraft Certification Human Factors and Operations Checklist for Standalone GPS Receivers (TSO C129 Class A). Federal Aviation Administration, 230 pp.
  13. Kemp, D. E., 1968: Federal aviation administration air safety program. J. Air Law Commer., 34, 363.
  14. Kim, J.-H., and H.-Y. Chun, 2011: Statistics and possible sources of aviation turbulence over South Korea. J. Appl. Meteorol. Climatol., 50, 311-324, doi:10.1175/2010JAMC2492.1.
  15. Kim, J.-H., and H.-Y. Chun, 2012: A numerical simulation of convectively induced turbulence above deep convection. J. Appl. Meteorol. Climatol., 51, 1180-1200, doi:10.1175/JAMC-D-11-0140.1.x
  16. Kim, J.-H., J.-R. Park, S.-H. Kim, J. Kim, E. Lee, S.-W. Baek, and G. Lee, 2021: A detection of convectively induced turbulence using in situ aircraft and radar spectral width data. Remote Sens., 13, 726, doi:10.3390/rs13040726.
  17. Kim, S.-H., and H.-Y. Chun, 2016: Aviation turbulence encounters detected from aircraft observations: spatiotemporal characteristics and application to Korean aviation turbulence guidance. Meteorol. Appl., 23, 594-604, doi:10.1002/met.1581.
  18. Kim, S.-H., H.-Y. Chun, J.-H. Kim, R. D. Sharman, and M. Strahan, 2020: Retrieval of eddy dissipation rate from derived equivalent vertical gust included in aircraft meteorological data relay (AMDAR). Atmos. Meas. Tech., 13, 1373-1385, doi:10.5194/amt-13-1373-2020.
  19. Kim, S.-H., J. Kim, J.-H. Kim, and H.-Y. Chun, 2022: Characteristics of the derived energy dissipation rate using the 1 Hz commercial aircraft quick access recorder (QAR) data. Atmos. Meas. Tech., 15, 2277-2298, doi:10.5194/amt-15-2277-2022.
  20. Lee, D. K., H. R. Kim, and S. Y. Hong, 1998: Heavy rainfall over Korea during 1980~1990. Korean J. Atmos. Sci., 1, 32-50 (in Korean with English abstract).
  21. Moninger, W. R., R. D. Mamrosh, and P. M. Pauley, 2003: Automated meteorological reports from commercial aircraft. Bull. Am. Meteorol. Soc., 84, 203-216. https://doi.org/10.1175/BAMS-84-2-203
  22. Park, S. U., C. H. Joung, S. S. Kim, D. K. Lee, S. C. Yoon, Y. K. Jeong, and S. G. Hong, 1986: Synoptic-scale features of the heavy rainfall occurred over Korea during 1~3 September 1984. Asia-Pac. J. Atmos. Sci., 22, 42-81.
  23. Petersen, R. A., 2016: On the impact and benefits of AMDAR observations in operational forecasting-part I: a review of the impact of automated aircraft wind and temperature reports. Bull. Am. Meteorol. Soc., 97, 585-602, doi:10.1175/BAMS-D-14-00055.1.
  24. Sharman, R., C. Tebaldi, G. Wiener, and J. Wolff, 2006: An integrated approach to mid- and upper-level turbulence forecasting. Wea. Forecasting, 21, 268-287. https://doi.org/10.1175/WAF924.1
  25. Sharman, R., L. B. Cornman, G. Meymaris, J. Pearson, and T. Farrar, 2014: Description and derived climatologies of automated in situ eddy-dissipation-rate reports of atmospheric turbulence. J. Appl. Meteorol. Climatol., 53, 1416-1432, doi:10.1175/JAMC-D-13-0329.1.
  26. Stickland, J. J., 1998: An Assessment of Two Algorithms for Automatic Measurement and Reporting of Turbulence from Commercial Public Transport Aircraft. Bureau of Meteorology, 42 pp.
  27. Stoffelen, A., 1998: Toward the true near-surface wind speed: error modeling and calibration using triple collocation. J. Geophys. Res. Oceans, 103, 7755-7766. https://doi.org/10.1029/97JC03180
  28. Stone, E. K., and M. Kitchen, 2015: Introducing an approach for extracting temperature from aircraft GNSS and pressure altitude reports in ADS-B messages. J. Atmos. Ocean. Technol., 32, 736-743, doi:10.1175/JTECH-D-14-00192.1
  29. Trier, S. B., R. D. Sharman, and T. P. Lane, 2012: Influences of moist convection on a cold-season outbreak of clear-air turbulence (CAT). Mon. Wea. Rev., 140, 2477-2496, doi:10.1175/MWR-D-11-00353.1.
  30. Trier, S. B., and R. D. Sharman, 2018: Trapped gravity waves and their association with turbulence in a large thunderstorm anvil during PECAN. Mon. Wea. Rev., 146, 3031-3052, doi:10.1175/MWR-D-18-0152.1.
  31. World Meteorological Organization [WMO], 2003: Aircraft Meteorological Data Relay (AMDAR) Reference Manual. WMO, 80 pp.
  32. World Meteorological Organization [WMO], 2017: Guide to aircraft-based observations. WMO, 132 pp. [Available online at https://library.wmo.int/doc_num.php?explnum_id=4120] (Accessed 7 Jun 2022).
  33. WMO AMDAR Panel, 2007: The international AMDAR program. World Meteorol. Organ. Inf. Fly., 12, 141 pp.