Acknowledgement
본 연구를 위해 자료동화시스템을 제공해주신 울산과학기술대학교 도시환경공학과 이명인 교수 연구팀과 서은교 박사님께 감사드립니다. 이 연구는 기상청 국립기상과학원 「기후예측 현업시스템 개발」(KMA2018-00322)의 지원으로 수행되었습니다.
References
- Beck, H. E., A. I. J. M. van Dijk, V. Levizzani, J. Schellekens, D. G. Miralles, B. Martens, and A. De Roo, 2017: MSWEP: 3-hourly 0.25° global gridded precipitation (1979-2015) by merging gauge, satellite, and reanalysis data. Hydrol. Earth Syst. Sci., 21, 589-615, doi:10.5194/hess-21-589-2017.
- Chan, S. K., and Coauthors, 2016: Assessment of the SMAP passive soil moisture product. IEEE Trans. Geosci. Remote Sens., 54, 4994-5007, doi:10.1109/TGRS.2016.2561938.
- Crow, W. T., and Coauthors, 2012: Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev. Geophys., 50, doi:10.1029/2011RG000372.
- de Rosnay, P., M. Drusch, D. Vasiljevic, G. Balsamo, C. Albergel, and L. Isaksen, 2013: A simplified extended Kalman filter for the global operational soil moisture analysis at ECMWF. Q. J. R. Meteorol. Soc., 139, 1199-1213, doi:10.1002/qj.2023.
- Dirmeyer, P. A., 2003: The role of the land surface back- ground state in climate predictability. Clim. Hydrometeorol., 4, 599-610. https://doi.org/10.1175/1525-7541(2003)004<0599:TROTLS>2.0.CO;2
- Dirmeyer, P. A., 2006: The hydrologic feedback pathway for landclimate coupling. J. Hydrometeorol., 7, 857-867. https://doi.org/10.1175/JHM526.1
- Entekhabi, D., and Coauthors, 2010: The soil moisture active passive (SMAP) mission. Proc. IEEE, 98, 704-716, doi:10.1109/JPROC.2010.2043918.
- Entekhabi, D., N. Das, E. Njoku, J. Johnson, and J. Shi, 2012: Soil Moisture Active Passive (SMAP) algorithm theoretical basis document L2 & L3 radar/radiometer soil moisture (active/passive) data products [Available online at http://smap.jpl.nasa.gov/files/smap2/L2&3_SM_AP_InitRel_v11.pdf].
- Entin, J. K., A. Robock, K. Y. Vinnikov, S. E. Hollinger, S. Liu, and A. Namkhai, 2000: Temporal and spatial scales of observed soil moisture variations in the extratropics. J. Geophys. Res., 105, 11865-11877. https://doi.org/10.1029/2000JD900051
- Fairbairn, D., P. de Rosnay, and P. A. Browne, 2019: The new stand-alone surface analysis at ECMWF: implications for land-atmosphere DA coupling. J. Hydrometeorol., 20, 2023-2042, doi:10.1175/JHM-D19-0074.1.
- Giorgi, F., and R. Francisco, 2000: Uncertainties in regional climate change prediction: a regional analysis of ensemble simulations with the HADCM2 coupled AOGCM. Clim. Dyn., 16, 169-182. https://doi.org/10.1007/PL00013733
- He, L., J. M. Chen, G. Mostovoy, and A. Gonsamo, 2021: Soil moisture active passive improves global soil moisture simulation in a land surface scheme and reveals strong irrigation signals over farmlands. Geophys. Res. Lett., 48, e2021GL092658, doi:10.1029/2021GL092658.
- Hersbach, H., and D. Dee, 2016: ERA5 reanalysis is in production. ECMWF Newsletter [Available online at https://www.ecmwf.int/en/newsletter/147/news/era5-reanalysis-production].
- Hunt, B. R., E. J. Kostelich, and I. Szunyogh, 2007: Efficient data assimilation for spatiotemporal chaos: a local ensemble transform Kalman filter. Phys. D Nonlinear Phenomena, 230, 112-126. https://doi.org/10.1016/j.physd.2006.11.008
- Hutt, A., 2020: Divergence of the ensemble transform Kalman filter (LETKF) by nonlocal observations. Front. Appl. Math. Stat., 6, 42, doi:10.3389/fams.2020.00042.
- Kim, H., J. Lee, Y. K. Hyun, and S.-O. Hwang, 2021: The KMA global seasonal forecasting system (GloSea6) - part 1: operational system and improvements. Atmosphere, 31, 341-359, doi:10.14191/Atmos.2021.31.3.341 (in Korean with English abstract).
- Koster, R. D., and M. J. Suarez, 2001: Soil moisture memory in climate models. J. Hydrometeorol., 2, 558-570. https://doi.org/10.1175/1525-7541(2001)002<0558:SMMICM>2.0.CO;2
- Koster, R. D., and Coauthors, 2004: Realistic initialization of land surface states: impacts on subseasonal forecast skill. J. Hydrometeorol., 5, 1049-1063. https://doi.org/10.1175/JHM-387.1
- Koster, R. D., and Coauthors, 2006: GLACE: the global land-atmosphere coupling experiment. Part I: overview. J. Hydrometeorol., 7, 590-610. https://doi.org/10.1175/JHM510.1
- Koster, R. D., Z. Guo, R. Yang, P. A. Dirmeyer, K. Mitchell, and M. J. Puma, 2009: On the nature of soil moisture in land surface models. J. Clim., 22, 4322-4335. https://doi.org/10.1175/2009JCLI2832.1
- Koster, R. D., and Coauthors, 2010: Contribution of land surface initialization to subseasonal forecast skill: first results from a multi-model experiment. Geophys. Res. Lett., 37, L02402, doi:10.1029/2009GL041677.
- Koster, R. D., and Coauthors, 2011: The second phase of the global land-atmosphere coupling experiment: soil moisture contributions to subseasonal forecast skill. J. Hydrometeorol., 12, 805-822, doi:10.1175/2011JHM1365.1.
- Koukoula, M., C. S. Schwartz, E. I. Nikolopoulos, and E. N. Anagnostou, 2021: Understanding the impact of soil moisture on precipitation under different climate and meteorological conditions: a numerical sensitivity study over the CONUS. J. Geophys. Res. Atmos., 126, e2021JD035096, doi:10.1029/2021JD035096.
- Lahoz, W.A., and G. J. M. De Lannoy, 2014: Closing the gaps in our knowledge of the hydrological cycle over land: conceptual problems. Surv. Geophys., 35, 623-660, doi:10.1007/s10712-013-9221-7.
- Lim, S., Y. K. Hyun, H. Ji, and J. Lee, 2021: Application of land initialization and its impact in KMA's operational climate prediction system. Atmosphere, 31, 327-340, doi:10.14191/Atmos.2021.31.3.327 (in Korean with English abstract).
- L'vovich, M. I., 1979: World Water Resources and Their Future. American Geophysical Union, 415 pp.
- Lopez, N., 2021: Copernicus: 2020 warmest year on record for Europe; globally, 2020 ties with 2016 for warmest year recorded [Available online at https://climate.copernicus.eu/copernicus-2020-warmest-year-record-europe-globally-2020-ties-2016-warmest-year-recorded].
- Materia, S., A. Borrelli, A. Bellucci, A. Alessandri, P. Di Pietro, P. Athanasiadis, A. Navarra, and S. Gualdi, 2014: Impact of atmosphere and land surface initial conditions on seasonal forecasts of global surface temperature, J. Clim., 27, 9253-9271, doi:10.1175/JCLID-14-00163.1.
- Miyoshi, T., and S. Yamane, 2007: Local ensemble transform Kalman filtering with an AGCM at a T159/L48 resolution. Mon. Wea. Rev., 135, 3841-3861. https://doi.org/10.1175/2007mwr1873.1
- Paolino, D. A., J. L. Kinter III, B. P. Kirtman, D. Min, and D. M. Straus, 2012: The impact of land surface and atmospheric initialization on seasonal forecasts with CCSM. J. Clim., 25, 1007-1021, doi:10.1175/2011JCLI3934.1.
- Peng, J., and Coauthors, 2021: A roadmap for high-resolution satellite soil moisture applications - confronting product characteristics with user requirements. Remote Sens. Environ., 252, 112162, doi:10.1016/j.rse.2020.112162.
- Reichle, R. H., and R. D. Koster, 2004: Bias reduction in short records of satellite soil moisture. Geophys. Res. Lett., 31, L19501. https://doi.org/10.1029/2004GL020938
- Reichle, R. H., W. T. Crow, and C. L. Keppenne, 2008: An adaptive ensemble Kalman filter for soil moisture data assimilation. Water Resour. Res., 44, W03423. https://doi.org/10.1029/2007WR006357
- Reichle, R. H., and Coauthors, 2011: Assessment and enhancement of MERRA land surface hydrology estimates. J. Clim., 24, 6322-6338, doi:10.1175/JCLI-D-10-05033.1.
- Reichle, R. H., and Coauthors, 2017: Global assessment of the SMAP level-4 surface and root-zone soil moisture product using assimilation diagnostics. J. Hydrometeorol., 18, 3217-3237, doi:10.1175/JHM-D-17-0130.1.
- Santanello JA Jr., J. A., P. Lawston, S. Kumar, and E. Dennis, 2019: Understanding the impacts of soil moisture initial conditions on NWP in the context of land-atmosphere coupling. J. Hydrometeorol., 20, 793-819, doi:10.1175/JHM-D-18-0186.1.
- Scipal, K., M. Drusch, and W. Wagner, 2008: Assimilation of a ERS scatterometer derived soil moisture index in the ECMWF numerical weather prediction system. Adv. Water Resour., 31, 1101-1112. https://doi.org/10.1016/j.advwatres.2008.04.013
- Seneviratne, S. I., and Coauthors, 2006: Soil moisture memory in AGCM simulations: analysis of global land-atmosphre coupling experiment (GLACE) data. J. Hydrometeorol., 7, 1090-1112. https://doi.org/10.1175/JHM533.1
- Seneviratne, S. I., and Coauthors, 2010: Investigating soil moisture-climate interactions in a changing climate: a review. Earth Sci. Rev., 99, 125-161, doi:10.1016/j.earscirev.2010.02.004.
- Seo, E., M.-I. Lee, J.-H. Jeong, H.-S. Kang, and D.-J. Won, 2016: Improvement of soil moisture initialization for a global seasonal forecast system. Atmosphere, 26, 35-45, doi:10.14191/Atmos.2016.26.1.035 (in Korean with English abstract).
- Seo, E., and Coauthors, 2019: Impact of soil moisture initialization on boreal summer subseasonal forecasts: mid-latitude surface air temperature and heat wave events. Clim. Dyn., 52, 1695-1709, doi:10.1007/s00382-018-4221-4.
- Seo, E., M.-I. Lee, S. D. Schubert, R. D. Koster, and H. S. Kang, 2020: Investigation of the 2016 Eurasia heat wave as an event of the recent warming. Environ. Res. Lett., 15, 114018, doi:10.1088/1748-9326/abbbae.
- Seo, E., M.-I. Lee, and R. H. Reichle, 2021: Assimilation of SMAP and ASCAT soil moisture retrievals into the JULES land surface model using the local ensemble transform Kalman filter. Remote Sens. Environ., 253, 112222, doi:10.1016/j.rse.2020.112222.
- Seo, E., and P. A. Dirmeyer, 2022: Improving the ESA CCI daily soil moisture time series with physically based land surface model datasets using a Fourier time-filtering method. J. Hydrometeorol., 23, 473-489, doi:10.1175/JHM-D-21-0120.1.
- Shi, P., and Coauthors, 2022: Contributions of weakly coupled data assimilation-based land initialization to interannual predictability of summer climate over Europe. J. Clim., 35, 517-535, doi:10.1175/JCLI-D20-0506.1.
- Sospedra-Alfonso, R., and W. J. Merryfield, 2018: Initialization and potential predictability of soil moisture in the Canadian seasonal to interannual prediction system. J. Clim., 31, 5205-5224, doi:10.1175/JCLI-D-17-0707.1.
- Stocker, T. F., and Coauthors, 2014: Climate Change 2013 - The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, 1552 pp.
- Trenberth, K. E., L. Smith, T. Qian, A. Dai, and J. Fasullo, 2007: Estimates of the global water budget and its annual cycle using observational and model data. J. Hydrometeorol., 8, 758-769. https://doi.org/10.1175/JHM600.1
- Xie, P., and P. A. Arkin, 1997: Global precipitation: a 17-year monthly analysis based on gauge observations, satellite estimates, and numerical model outputs. Bull. Am. Meteorol. Soc., 78, 2539-2558. https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2
- Yoon, J. H., and L. R. Leung, 2015: Assessing the relative influence of surface soil moisture and ENSO SST on precipitation predictability over the contiguous United States. Geophys. Res. Lett., 42, 5005-5013, doi:10.1002/2015GL064139.