DOI QR코드

DOI QR Code

Spectral Deconvolution Analysis of Mafic Mineral in Irregular Mare Patches on the Moon

  • Hong, Ik-Seon (Department of Astronomy, Space Science and Geology, Chungnam National University) ;
  • Yi, Yu (Department of Astronomy, Space Science and Geology, Chungnam National University) ;
  • Park, Nuri (School of Earth and Space Exploration, Arizona State University)
  • 투고 : 2022.11.28
  • 심사 : 2022.12.12
  • 발행 : 2022.12.15

초록

Irregular mare patches (IMPs), recently discovered on the Moon, are eruptions of magma on the lunar surface, and their origins are still in question. While prior studies on IMPs have mainly focused on optical image analysis, in this study, an analysis of the characteristics of minerals is performed exemplary for the first time. Modified Gaussian model (MGM) deconvolution was applied to the infrared spectrum to confirm the properties of the mafic mineral. Mafic minerals were analyzed for 6 olivine-rich (Ol-rich) IMPs out of 91 currently reported, and only 4 of them yielded results of significance. All four sites showed more abundance of Fe than Mg, and manifested a weak relationship with Mg-suite rock. However, a problem was discovered during the MGM application process due to pilot implementation. In order to solve this problem, it is required to adjust the MGM initial condition settings more precisely and to increase the signal to noise ratio of the observation data. Moreover, it is necessary to analyze the mineral properties for all IMPs considering minerals other than Ol and utilize them to deduce the origin of the IMPs.

키워드

과제정보

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2022R1A2C1092602).

참고문헌

  1. Basaltic Volcanism Study Project (BVSP), Basaltic Volcanism on the Terrestrial Planets (Pergamon Press, Inc., New York, 1981).
  2. Bibring JP, Langevin Y, Mustard JF, Poulet F, Arvidson R, Global mineralogical and aqueous mars history derived from OMEGA/Mars Express data, Science 312, 400-404 (2006). https://doi.org/10.1126/science.1122659
  3. Braden SE, Stopar JD, Robinson MS, Lawrence SJ, Van Der Bogert CH, et al., Evidence for basaltic volcanism on the Moon within the past 100 million years, Nat. Geosci. 7, 787-791 (2014). https://doi.org/10.1038/ngeo2252
  4. Byron BD, Elder CM, Williams JP, Ghent RR, Gallinger CL, et al., Thermophysical properties of lunar irregular mare patches from LRO diviner radiometer data, J. Geophys. Res. Planets 127, e2022JE007214 (2022). https://doi.org/10.1029/2022JE007214
  5. Charlier B, Grove TL, Namur O, Holtz F, Crystallization of the lunar magma ocean and the primordial mantle-crust differentiation of the Moon, Geochim. Cosmochim. Acta 234, 50-69 (2018). https://doi.org/10.1016/j.gca.2018.05.006
  6. Cheek LC, Pieters CM, The Second Conference on the Lunar Highlands Crust and New Directions. Reflectance spectroscopy of plagioclase-dominated mineral mixtures: Implications for characterizing lunar anorthosites remotely, Am. Mineral. 99, 1871-1892 (2014). https://doi.org/10.2138/am-2014-4785
  7. Chen J, Ling Z, Qiao L, He Z, Xu R, Mineralogy of Chang'e-4 landing site: preliminary results of visible and near-infrared imaging spectrometer, Sci. China inf. Sci. 63, 140903 (2020). https://doi.org/10.1007/s11432-019-2768-1
  8. Clark RN, Pieters CM, Green RO, Boardman JW, Petro NE, Thermal removal from near-infrared imaging spectroscopy data of the Moon, J. Geophys. Res. 116, E00G16 (2011). https://doi.org/10.1029/2010JE003751
  9. Cushing GE, Candidate cave entrances on Mars, J. Cave Karst Stud. 74, 33-47 (2012). https://doi.org/10.4311/2010EX0167R
  10. Cushing GE, Titus TN, Wynne JJ, Christensen PR, THEMIS observes possible cave skylights on Mars, Geophys. Res. Lett. 34, L17201 (2007). http://doi.org/10.1029/2007GL030709
  11. Denevi BW, Lucey PG, Hochberg EJ, Steutel D, Near-infrared optical constants of pyroxene as a function of iron and calcium content, J. Geophys. Res. 112, E05009 (2007). https://doi.org/10.1029/2006JE002802
  12. Elardo SM, Draper DS, Shearer CK Jr, Lunar magma ocean crystallization revisited: bulk composition, early cumulate mineralogy, and the source regions of the highlands Mgsuite, Geochim. Cosmochim. Acta 75, 3024-3045 (2011). https://doi.org/10.1016/j.gca.2011.02.033
  13. Garry WB, Robinson MS, Zimbelman JR, Bleacher JE, Hawke BR, et al., The origin of Ina: evidence for inflated lava flows on the Moon, J. Geophys. Res. 117, E00H31 (2012). https://doi.org/10.1029/2011JE003981
  14. Gou S, Di K, Yue Z, Liu Z, He Z, et al., Forsteritic olivine and magnesium-rich orthopyroxene materials measured by Chang'e-4 rover, Icarus 345, 113776 (2020). https://doi.org/10.1016/j.icarus.2020.113776
  15. Green RO, Pieters C, Mouroulis P, Eastwood M, Boardman J, et al., The moon mineralogy mapper (M3) imaging spectrometer for lunar science: instrument description, calibration, onorbit measurements, science data calibration and on-orbit validation, J. Geophys. Res. 116, E00G19 (2011). https://doi.org/10.1029/2011JE003797
  16. Grier JA, McEwen AS, Lucey PG, Milazzo M, Strom RG, Optical maturity of ejecta from large rayed lunar craters, J. Geophys. Res. 106, 32847-32862 (2001). https://doi.org/10.1029/1999JE001160
  17. Heiken GH, Vaniman DT, French BM, Lunar Sourcebook (Cambridge University Press, Cambridge, 1991).
  18. Hess PC, Parmentier EM, A model for the thermal and chemical evolution of the Moon's interior: implications for the onset of mare volcanism, Earth Planet. Sci. Lett. 134, 501-514 (1995). https://doi.org/10.1016/0012-821X(95)00138-3
  19. Hong IS, Yi Y, Kim E, Lunar pit craters presumed to be the entrances of lava caves by analogy to the earth lava tube pits, J. Astron. Space Sci. 31, 131-140 (2014). http://doi.org/10.5140/JASS.2014.31.2.131
  20. Isaacson PJ, Petro NE, Pieters CM, Besse S, Boardman JW, et al., Development, importance, and effect of a ground truth correction for the Moon mineralogy mapper reflectance data set, J. Geophys. Res. Planets 118, 369-381 (2013). https://doi.org/10.1002/jgre.20048
  21. Isaacson PJ, Pieters CM, Deconvolution of lunar olivine reflectance spectra: implications for remote compositional assessment, Icarus 210, 8-13 (2010). https://doi.org/10.1016/j.icarus.2010.06.004
  22. Isaacson PJ, Pieters CM, Besse S, Clark RN, Head JW, et al., Remote compositional analysis of lunar olivinerich lithologies with Moon mineralogy mapper (M3) spectra, J. Geophys. Res. 116, E00G11 (2011). https://doi.org/10.1029/2010JE003731
  23. Jung J, Hong IS, Cho E, Yi Y, Method for identifying lava tubes among pit craters using brightness profile across pits on the Moon or mars, J. Astron. Space Sci. 33, 21-28 (2016). https://doi.org/10.5140/JASS.2016.33.1.21
  24. Jung J, Yi Y, Kim E, Identification of martian cave skylights using the temperature change during day and night, J. Astron. Space Sci. 31, 141-144 (2014). https://doi.org/10.5140/JASS.2014.31.2.141
  25. Kanner LC, Mustard JF, Gendrin A, Assessing the limits of the modified Gaussian model for remote spectroscopic studies of pyroxenes on Mars, Icarus 187, 442-456 (2007). https://doi.org/10.1016/j.icarus.2006.10.025
  26. Kim SY, Yi Y, Hong IS, Sohn J, Solar insolation effect on the local distribution of lunar hydroxyl, J. Astron. Space Sci. 35, 47-54 (2018). https://doi.org/10.5140/JASS.2018.35.1.47
  27. King TVV, Ridley WI, Relation of the spectroscopic reflectance of olivine to mineral chemistry and some remote sensing implications, J. Geophys. Res. 92, 11457-11469 (1987). https://doi.org/10.1029/JB092iB11p11457
  28. Lemelin M, Lucey PG, Miljkovic K, Gaddis LR, Hare T, The compositions of the lunar crust and upper mantle: spectral analysis of the inner rings of lunar impact basins, Planet. Space Sci. 165, 230-243 (2019). https://doi.org/10.1016/j.pss.2018.10.003
  29. Li C, Liu D, Liu B, Ren X, Liu J, et al., Chang'E-4 initial spectroscopic identification of lunar far-side mantle-derived materials, Nature 569, 378-382 (2019a). https://doi.org/10.1038/s41586-019-1189-0
  30. Li H, Zhang N, Liang Y, Wu B, Dygert NJ, et al., Lunar cumulate mantle overturn: a model constrained by ilmenite rheology, J. Geophys. Res. Planets 124, 1357-1378 (2019b). https://doi.org/10.1029/2018JE005905
  31. Li S, Milliken RE, An empirical thermal correction model for Moon mineralogy mapper data constrained by laboratory spectra and diviner temperatures, J. Geophys. Res. Planets 121, 2081-2107 (2016). https://doi.org/10.1002/2016JE005035
  32. Lucey PG, Blewett DT, Taylor GJ, Hawke BR, Imaging of lunar surface maturity, J. Geophys. Res. 105, 20377-20386 (2000). https://doi.org/10.1029/1999JE001110
  33. Lucey PG, Taylor GJ, Malaret E, Abundance and distribution of iron on the Moon, Science 268, 1150-1153 (1995). https://doi.org/10.1126/science.268.5214.1150
  34. McCord TB, Adams JB, Progress in remote optical analysis of lunar surface composition, Moon 7, 453-474 (1973). https://doi.org/10.1007/BF00564646
  35. McCord TB, Johnson TV, Lunar spectral reflectivity (0.30 to 2.50 microns) and implications for remote mineralogical analysis, Science 169, 855-858 (1970). https://doi.org/10.1126/science.169.3948.855
  36. McEwen AS, Robinson MS, Mapping of the Moon by Clementine. Adv. Space Res. 19, 1523-1533 (1997). https://doi.org/10.1016/S0273-1177(97)00365-7
  37. Melosh HJ, Kendall J, Horgan B, Johnson BC, Bowling T, et al., South pole-Aitken basin ejecta reveal the Moon's upper mantle, Geology 45, 1063-1066 (2017). https://doi.org/10.1130/G39375.1
  38. Noble SK, Pieters CM, Hiroi T, Taylor LA, Using the modified Gaussian model to extract quantitative data from lunar soils, J. Geophys. Res. 111, E11009 (2006). https://doi.org/10.1029/2006JE002721
  39. Nozette S, Rustan P, Pleasance LP, Kordas JF, Lewis IT, et al., The Clementine mission to the Moon: scientific overview, Science 266, 1835-1839 (1994). https://www.doi.org/10.1126/science.266.5192.1835
  40. Ohtake M, Haruyama J, Matsunaga T, Yokota Y, Morota T, et al., Performance and scientific objectives of the SELENE (Kaguya) multiband imager, Earth Planets Space 60, 257-264 (2008). https://doi.org/10.1186/BF03352789
  41. Ohtake M, Matsunaga T, Haruyama J, Yokota Y, Morota T, et al., The global distribution of pure anorthosite on the Moon, Nature 461, 236-240 (2009). https://doi.org/10.1038/nature08317
  42. Pelkey SM, Mustard JF, Murchie S, Clancy RT, Wolff M, et al., CRISM multispectral summary products: parameterizing mineral diversity on Mars from reflectance, J. Geophys. Res. 112, E08S14 (2007). https://doi.org/10.1029/2006JE002831
  43. Pieters CM, Fischer EM, Rode O, Basu A, Optical effects of space weathering: the role of the finest fraction, J. Geophys. Res. 98, 20817-20824 (1993). https://doi.org/10.1029/93JE02467
  44. Pieters CM, Noble SK, Space weathering on airless bodies, J. Geophys. Res. Planets 121, 1865-1884 (2016). https://doi.org/10.1002/2016JE005128
  45. Pieters CM, Taylor LA, Noble SK, Keller LP, Hapke B, Space weathering on airless bodies: resolving a mystery with lunar samples, Meteorit. Planet. Sci. 35, 1101-1107 (2000). https://doi.org/10.1111/j.1945-5100.2000.tb01496.x
  46. Qiao L, Head JW, Ling Z, Wilson L, Lunar Irregular mare patches: classification, characteristics, geologic settings, updated catalog, origin, and outstanding questions, J. Geophys. Res. Planets 125, e2019JE006362 (2020). https://doi.org/10.1029/2019JE006362
  47. Ringwood AE, Kesson SE, A dynamic model for mare basalt petrogenesis, Proceedings of the 7th Lunar Science Conference, Houston, TX, 15-19 Mar 1976.
  48. Sim CK, Kim SS, Spectral trends of the surface regolith in lunar craters, J. Geophys. Res. Planets 123, 2065-2075 (2018). https://doi.org/10.1029/2018JE005670
  49. Sim CK, Kim SS, Lucey PG, Garrik-Bethell I, Choi YJ, Asymmetric space weathering on lunar crater walls, Geophys. Res. Lett. 44, 11273-11281 (2017). https://doi.org/10.1002/2017GL075338
  50. Strain PL, El-Baz F, The geology and morphology of Ina, Proceedings of the 11th Lunar and Planetary Science Conference, Houston, TX, 17-21 Mar 1980.
  51. Sunshine JM, McFadden LA, Pieters CM, Reflectance spectra of the Elephant Moraine A79001 meteorite: implications for remote sensing of planetary bodies, Icarus 105, 79-91 (1993). https://doi.org/10.1006/icar.1993.1112
  52. Sunshine JM, Pieters CM, Estimating modal abundances from the spectra of natural and laboratory pyroxene mixtures using the modified Gaussian model, J. Geophys. Res. 98, 9075-9087 (1993). https://doi.org/10.1029/93JE00677
  53. Sunshine JM, Pieters CM, Determining the composition of olivine from reflectance spectroscopy, J. Geophys. Res. 103, 13675-13688 (1998). https://doi.org/10.1029/98JE01217
  54. Sunshine JM, Pieters CM, Pratt SF, Deconvolution of mineral absorption bands: an improved approach, J. Geophys. Res. 95, 6955-6966 (1990). https://doi.org/10.1029/JB095iB05p06955
  55. Trang D, Lucey PG, Gillis-Davis JJ, Cahill JTS, Klima RL, et al., Near-infrared optical constants of naturally occurring olivine and synthetic pyroxene as a function of mineral composition, J. Geophys. Res. Planets 118, 708-732 (2013). https://doi.org/10.1002/jgre.20072
  56. Whitaker EA, An unusual mare feature, Apollo 15 Preliminary Science Report, ed. NASA (NASA, Washington, 1972).
  57. Wieczorek MA, Jolliff BL, Khan A, Pritchard ME, Weiss BP, et al., The constitution and structure of the Lunar interior, Rev. Mineral. Geochem. 60, 221-364 (2006). https://doi.org/10.2138/rmg.2006.60.3
  58. Wilson L, Head JW, Eruption of magmatic foams on the moon: formation in the waning stages of dike emplacement events as an explanation of "irregular mare patches," J. Volcanol. Geotherm. Res. 335, 113-127 (2017). https://doi.org/10.1016/j.jvolgeores.2017.02.009
  59. Yamamoto S, Nakamura R, Matsunaga T, Ogawa Y, Ishihara Y, et al., Possible mantle origin of olivine around lunar impact basins detected by SELENE, Nat. Geosci. 3, 533-536 (2010). https://doi.org/10.1038/ngeo897
  60. Yi ES, Kim KJ, Choi YR, Kim YH, Lee SS et al., Investigation of reflectance distribution and trend for the double ray located in the northwest of Tycho crater, J. Astron. Space Sci. 32, 161-166 (2015). https://doi.org/10.5140/JASS.2015.32.2.161