DOI QR코드

DOI QR Code

Label-free and sensitive detection of purine catabolites in complex solutions by surface-enhanced raman spectroscopy

  • Davaa-Ochir, Batmend (Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS)) ;
  • Ansah, Iris Baffour (Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS)) ;
  • Park, Sung Gyu (Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS)) ;
  • Kim, Dong-Ho (Nano-Bio Convergence Department, Korea Institute of Materials Science (KIMS))
  • Received : 2022.10.20
  • Accepted : 2022.11.07
  • Published : 2022.12.31

Abstract

Purine catabolite screening enables reliable diagnosis of certain diseases. In this regard, the development of a facile detection strategy with high sensitivity and selectivity is demanded for point-of-care applications. In this work, the simultaneous detection of uric acid (UA), xanthine (XA), and hypoxanthine (HX) was carried out as model purine catabolites by surface-enhanced Raman Spectroscopy (SERS). The detection assay was conducted by employing high-aspect ratio Au nanopillar substrates coupled with in-situ Au electrodeposition on the substrates. The additional modification of the Au nanopillar substrates via electrodeposition was found to be an effective method to encapsulate molecules in solution into nanogaps of growing Au films that increase metal-molecule contact and improve substrate's sensitivity and selectivity. In complex solutions, the approach facilitated ternary identification of UA, XA, and HX down to concentration limits of 4.33 𝜇M, 0.71 𝜇M, and 0.22 𝜇M, respectively, which are comparable to their existing levels in normal human physiology. These results demonstrate that the proposed platform is reliable for practical point-of-care analysis of biofluids where solution matrix effects greatly reduce selectivity and sensitivity for rapid on-site disease diagnosis.

Keywords

References

  1. D. Cialla, A. Marz, R. Bohme, F. Theil, K. Weber, M. Schmitt, J. Popp, Surface-enhanced raman spectroscopy (SERS): progress and trends, Anal. Bioanal. Chem., 403(2012) 27-54. https://doi.org/10.1007/s00216-011-5631-x
  2. S. Kim, I. B. Ansah, J. S. Park, H. Dang, N. Choi, W. C. Lee, S. H. Lee, H. S. Jung, D. H. Kim, S. M. Yoo, J. Choo, S. H. Kim, S. G. Park, Early and direct detection of bacterial signaling molecules through one-pot Au electrodeposition onto paper-based 3D SERS substrates, Sens. Actuators B Chem., 358(2022) 131504. https://doi.org/10.1016/j.snb.2022.131504
  3. E. H. Koh, W. C. Lee, Y. J. Choi, J. I. Moon, J. Jang, S. G. Park, J. Choo, D. H. Kim, H. S. Jung, A wearable surface-enhanced raman scattering sensor for label-free molecular detection, ACS Appl. Mater. Interfaces, 13(2021) 3024-3032. https://doi.org/10.1021/acsami.0c18892
  4. C. Li , Y. Huang, X. Li, Y. Zhang, Q. Chen, Z. Ye, Z. Alqarni, S. E. J. Bell, Y. Xu, Towards practical and sustainable SERS: a review of recent developments in the construction of multifunctional enhancing substrates, J. Mater. Chem. C, 9(2021) 11517-11552. https://doi.org/10.1039/D1TC02134F
  5. V. T. N. Linh, J. Moon, C. W. Mun, V. Devaraj, J. W. Oh, S. G. Park, D. H. Kim, J. Choo, Y. I. Lee, H. S. Jung, A facile low-cost paper-based SERS substrate for label-free molecular detection, Sens. Actuators B Chem., 291(2019) 369-377. https://doi.org/10.1016/j.snb.2019.04.077
  6. V. T. N. Linh, S. G. Yim, C. W. Mun, J. Y. Yang, S. Lee, Y. W. Yoo, D. K. Sung, Y. I. Lee, D. H. Kim, S. G. Park, S. Y. Yang, H. S. Jung, Bioinspired plasmonic nanoflower-decorated microneedle for label-free intradermal sensing, Appl. Surf. Sci., 551(2021) 149411. https://doi.org/10.1016/j.apsusc.2021.149411
  7. B. Sharma, R. R.Frontiera, A. I. Henry, E. Ringe, R. P.V. Duyne, SERS: Materials, applications, and the future, Mater. Today, 15(2012) 16-25. https://doi.org/10.1016/S1369-7021(12)70017-2
  8. C. W. Mun, V. T. N. Linh, J. D. Kwon, H. S. Jung, D. H. Kim, S. G. Park, Highly sensitiveand selective nanogap-enhanced SERS sensing platform, Nanomater., 9(2019) 619. https://doi.org/10.3390/nano9040619
  9. C. W. Mun, V. T. N. Linh, J. D. Kwon, H. S. Jung, D. H. Kim, S. G. Park, Highly sensitive and selective nanogap-enhanced SERS sensing platform, Nanomater., 9(2019) 619. https://doi.org/10.3390/nano9040619
  10. J. Langer, D. J. de Aberasturi, J. Aizpurua, R. A. A. Puebla, B. Auguie, J. J. Baumberg, G. C. Bazan, S. E. J. Bell, A. Boisen, A. G. Brolo, J. Choo, D. C. May, V. Deckert, L. Fabris, K. Faulds, F. J. G. de Abajo, R. Goodacre, D. Graham, A. J. Haes, C. L. Haynes, C. Huck, T. Itoh, M. Kall, J. Kneipp, N. A. Kotov, H. Kuang, E. C. Le Ru, H. K. Lee, J. F. Li, X. Y. Ling, S. A. Maier, T. Mayerhofer, M. Moskovits, K. Murakoshi, J. M. Nam, S. Nie, Y. Ozaki, I. P. Santos, J. P. Juste, J. Popp, A. Pucci, S. Reich, B. Ren, G. C. Schatz, T. Shegai, S. Schlucker, L. L. Tay, K. G. Thomas, Z. Q. Tian, R. P. V. Duyne, T. V. Dinh, Y. Wang, K. A. Willets, C. Xu, H. Xu, Y. Xu, Y. S. Yamamoto, B. Zhao, L. M. L. Marzan, Present and future of surface-enhanced raman scattering, ACS Nano, 14(2020) 28-117. https://doi.org/10.1021/acsnano.9b04224
  11. T. Y. Jeon, D. J. Kim, S. G. Park, S. H. Kim, D. H. Kim, Nanostructured plasmonic substrates for use as SERS sensors, Nano Converg., 2016. 3(2016) 18.
  12. I. B. Ansah, S. Kim, J. Y. Yang, C. W. Mun, H. S. Jung, S. Lee, D. H. Kim, S. H. Kim, S. G. Park, In situ electrodeposition of gold nanostructures in 3D ultra-thin hydrogel skins for direct molecular detection in complex mixtures with high sensitivity, Laser Photonics Rev., 15(2021) 2100316. https://doi.org/10.1002/lpor.202100316
  13. I. B. Ansah, W. C. Lee, C. W. Mun, J. J. Rha, H. S. Jung, M. Kang, S. G. Park, D. H. Kim, In situ electrochemical surface modification of Au electrodes for simultaneous label-free SERS detection of ascorbic acid, dopamine and uric acid, Sens. Actuators B Chem., 353(2022) 131196. https://doi.org/10.1016/j.snb.2021.131196
  14. X. Xie, D. P. Wang, C. Guo, Y. Liu, Q. Rao, F. Lou, Q. Li, Y. Dong, Q. Li, H. B. Yang, F. X. Hu, Single-atom ruthenium biomimetic enzyme for simultaneous electrochemical detection of dopamine and uric acid, Anal. Chem., 93(2021) 4916-4923. https://doi.org/10.1021/acs.analchem.0c05191
  15. W. Zhang, L. Liu, Y. Li, D. Wang, H. Ma, H. Ren, Y. Shi, Y. Han, B. C. Ye, Electrochemical sensing platform based on the biomass-derived microporous carbons for simultaneous determination of ascorbic acid, dopamine, and uric acid, Biosens. Bioelectron., 121(2018) 96-103. https://doi.org/10.1016/j.bios.2018.08.043
  16. D. Ji, Z. Liu, L. Liu, S. S. Low, Y. Lu, X. Yu, L. Zhu, C. Li, Q. Liu, Smartphone-based integrated voltammetry system for simultaneous detection of ascorbic acid, dopamine, and uric acid with graphene and gold nanoparticles modified screen-printed electrodes, Biosens. Bioelectron., 119(2018) 55-62. https://doi.org/10.1016/j.bios.2018.07.074
  17. R. Moldovan, E. Vereshchagina, K. Milenko, B. C. lacob, A. E. Bodoki, A. Falamas, N. Tosa, C. M. Muntean, C. Farcau, E. Bodoki, Review on combining surface-enhanced Raman spectroscopy and electrochemistry for analytical applications, Anal. Chim. Acta, 1209(2022) 339250. https://doi.org/10.1016/j.aca.2021.339250
  18. D. Y. Wu, J. F. Li, B. Ren, Z. Q. Tian, Electrochemical surface-enhanced Raman spectroscopy of nanostructures, Chem. Soc. Rev., 37(2008) 1025-1041. https://doi.org/10.1039/b707872m
  19. P. D. Lacharmoise, E. C. L. Ru, P. G. Etchegoin, Guiding molecules with electrostatic forces in surface enhanced raman spectroscopy, ACS Nano, 3(2009) 66-72. https://doi.org/10.1021/nn800710m
  20. M. Park, Y. J. Oh, S. G. Park, S. B. Yang, K. H. Jeong Electrokinetic preconcentration of small molecules within volumetric electromagnetic hotspots in surface enhanced raman scattering, Small, 11(2015) 2487-2492. https://doi.org/10.1002/smll.201402942
  21. M. L. B. Figueiredo, C. S. Martin, L. N Furini, R. J. G. Rubira, A. B. Neto, P. Alessio, C. J. L. Constantino Surface-enhanced raman scattering for dopamine in Ag colloid: Adsorption mechanism and detection in the presence of interfering species, Appl. Surf. Sci., 522(2020) 146466. https://doi.org/10.1016/j.apsusc.2020.146466
  22. C. Papandreou, J. Li, L. Liang, M. Bullo, Y. Zheng, M. R. Canela, E. Yu, M. G. Ferre, C. Razquin, C. Clish, D. Corella, R. Estruch, E. Ros, M. Fito, F. Aros, L. S. Majem, N. Rosique, M. A. M. Gonzalez, F. B. Hu, J. S. Salvado, Metabolites related to purine catabolism and risk of type 2 diabetes incidence; modifying effects of the TCF7L2-rs7903146 polymorphism, Sci. Rep., 9(2019) 2892. https://doi.org/10.1038/s41598-019-39441-6
  23. O. A. Snytnikova, L. V. Yanshole, I. A. Iskakov, V. V. Yanshole, V. V. Chernykh, D. A. Stepakov, V. P. Novoselov, Y. P. Tsentalovich, Quantitative metabolomic analysis of the human cornea and aqueous humor, Metabolomics, 13(2017) 152. https://doi.org/10.1007/s11306-017-1281-0
  24. L. Liao, Y. Xing, X. Xiong, L. Gan, L. Hu, F. Zhao, Y. Tong, S. Deng, An electrochemical biosensor for hypoxanthine detection in vitreous humor: A potential tool for estimating the post-mortem interval in forensic cases, Microchem. J., 155(2020) 104760. https://doi.org/10.1016/j.microc.2020.104760
  25. D. Garg, M. Singh, N. Verma, Monika, Review on recent advances in fabrication of enzymatic and chemical sensors for hypoxanthine, Food Chem., 375(2022) 131839. https://doi.org/10.1016/j.foodchem.2021.131839
  26. M. E. Mendelsohn, D. H. Abramson, S. Senft, C. A. Servodidio, P. H. Gamache, Uric acid in the aqueous humor and tears of retinoblastoma patients, Journal of AAPOS, 2(1998) 369-371. https://doi.org/10.1016/S1091-8531(98)90037-4
  27. B. K. Ghiam, L. Xu, J. L. Berry, Aqueous Humor Markers in Retinoblastoma, a Review, Transl. Vis. Sci. Technol., 8(2019) 13.
  28. S. Choi, S. W. Moon, S. H. Lee, W. Kim, S. Kim, S. K. Kim, J. H. Shin, Y. G. Park, K. H. Jin, T. G. kim, A recyclable CNC-milled microfluidic platform for colorimetric assays and label-free aged-related macular degeneration detection, Sens. Actuators B Chem., 290(2019) 484-492. https://doi.org/10.1016/j.snb.2019.04.025
  29. W. Kim, S. H. Lee, S. H. Kim, J. C. Lee, S. W. Moon, J. S. Yu, S. Choi, Highly reproducible Au-decorated ZnO nanorod array on a graphite sensor for classification of human aqueous humors, ACS Appl. Mater. Interfaces, 9(2017) 5891-5899. https://doi.org/10.1021/acsami.6b16130
  30. S. H Lee, S. Kim, J. Y. Yang, C. W. Mun, S. Lee, S. H. Kim, S. G. Park, Hydrogel-assisted 3D volumetric hotspot for sensitive detection by surface-enhanced raman spectroscopy, Int. J. Mol. Sci., 23(2022) 1004. https://doi.org/10.3390/ijms23021004
  31. I. B. Ansah, D. Aranda, H. S. Jung, S. G. Park, M. Kang, J. C. Otero, D. H. Kim, Dual synergistic modulation of photo-induced electron transfer processes between molecules and gold nanopillars for ultrasensitive plasmon-enhanced Raman scattering, J. Mater. Chem. C, 9(2021) 8842-8848. https://doi.org/10.1039/D1TC02163J
  32. I. B. Ansah, T. An, J. Y. Yang, H. S. Jung, C. W. Mun, S. Jung, S. Lee, Y. Jang, D. H. Kim, M. Kim, S. G. Park, Electrochemical synthesis of 3D plasmonic-molecule nanocomposite materials for in situ label-free molecular detections, Adv. Mater. Interfaces, 8(2021) 2101201. https://doi.org/10.1002/admi.202101201
  33. S. Gunasekaran, G. Sankari, S. Ponnusamy, Vibrational spectral investigation on xanthine and its derivatives-theophylline, caffeine and theobromine, Spectrochim. Acta A Mol. Biomol. Spectrosc., 61(2005) 117-127. https://doi.org/10.1016/j.saa.2004.03.030
  34. F. M. Miranda, A. Pedone, M. M. Miranda, Raman and computational study on the adsorption of xanthine on silver nanocolloids, ACS Omega, 3(2018) 13530-13537. https://doi.org/10.1021/acsomega.8b02174
  35. M. Arivazhagan, S. Jeyavijayan, FTIR and FT-raman spectra, assignments, ab initio HF and DFT analysis of xanthine, Spectrochim. Acta A Mol. Biomol. Spectrosc., 79(2011) 161-168. https://doi.org/10.1016/j.saa.2011.02.029
  36. J. Chowdhury, K. M. Mukherjee, T. N. Misra, A pH dependent surface-enhanced Raman scattering study of hypoxanthine, J. Raman Spectrosc., 31(2000) 427-431. https://doi.org/10.1002/1097-4555(200005)31:5<427::AID-JRS553>3.0.CO;2-L
  37. W. Huang, J. Z. Jiang, L. Chen, B. Q. Zhang, S. F. Deng, J. J. Sun, W. K. Chen, Density functional theory and surface enhanced Raman spectroscopy studies of tautomeric hypoxanthine and its adsorption behaviors in electrochemical processes, Electrochim. Acta, 164(2015) 132-138. https://doi.org/10.1016/j.electacta.2015.02.220
  38. S. H. Lee, W. C. Lee, E. H. Koh, I. B. Ansah, J. Y. Yang, C. W. Mun, S. Lee, D. H. Kim, H. S. Jung, S. G. Park, Organometallic hotspot engineering for ultrasensitive EC-SERS detection of pathogenic bacteria-derived DNAs, Biosens. Bioelectron., 210(2022) 114325. https://doi.org/10.1016/j.bios.2022.114325
  39. I. B. Ansah, S. H. Lee, C. W. Mun, D. H. Kim, S. G. Park, Interior hotspot engineering in Ag-Au bimetallic nanocomposites by in situ galvanic replacement reaction for rapid and sensitive surface-enhanced raman spectroscopy detection, Int. J. Mol. Sci., 23(2022) 11741. https://doi.org/10.3390/ijms231911741
  40. H. Tian, N. Zhang, J. Zhang, L, Tong, Exploring quantification in a mixture using graphene-based surface-enhanced Raman spectroscopy, Appl. Mater. Today, 15(2019) 288-293. https://doi.org/10.1016/j.apmt.2019.01.008