DOI QR코드

DOI QR Code

The effect of plasma treatment to improve adhesion strength of parylene-C coated medical grade SUS304

Parylene-C 코팅된 의료용 SUS304 소재의 결합력 향상을 위한 플라즈마 처리 효과

  • Kim, Dong-Guk (Department of Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K MEDI hub)) ;
  • Song, Tae-Ha (Department of Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K MEDI hub)) ;
  • Jeong, Yong-Hoon (Department of Medical Device Development Center, Osong Medical Innovation Foundation (KBIO Health)) ;
  • Kang, Kwan-Su (Department of Medical Device Development Center, Osong Medical Innovation Foundation (KBIO Health)) ;
  • Yoon, Deok-kyu (Department of Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K MEDI hub)) ;
  • Kim, Min-Uk (Department of Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K MEDI hub)) ;
  • Woo, Young-Jae (Department of Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K MEDI hub)) ;
  • Seo, Yo-Han (New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K MEDI hub)) ;
  • Kim, Kyung-Ah (Department of Biomedical Engineering, School of Medicine, Chungbuk National University) ;
  • Roh, Ji-hyoung (Department of Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K MEDI hub))
  • 김동국 (대구경북첨단의료산업진흥재단 첨단의료기기개발지원센터) ;
  • 송태하 (대구경북첨단의료산업진흥재단 첨단의료기기개발지원센터) ;
  • 정용훈 (오송첨단의료산업진흥재단 첨단의료기기개발지원센터) ;
  • 강관수 (오송첨단의료산업진흥재단 첨단의료기기개발지원센터) ;
  • 윤덕규 (대구경북첨단의료산업진흥재단 첨단의료기기개발지원센터) ;
  • 김민욱 (대구경북첨단의료산업진흥재단 첨단의료기기개발지원센터) ;
  • 우영재 (대구경북첨단의료산업진흥재단 첨단의료기기개발지원센터) ;
  • 서요한 (대구경북첨단의료산업진흥재단 신약개발지원센터) ;
  • 김경아 (충북대학교 의과대학 의용생체공학과) ;
  • 노지형 (대구경북첨단의료산업진흥재단 첨단의료기기개발지원센터)
  • Received : 2022.11.21
  • Accepted : 2022.12.02
  • Published : 2022.12.31

Abstract

Parylene-C which was mainly used for industries such as electronics, machinery and semiconductors has recently been in the spotlight in the medical field due to its properties such as corrosion resistance and biocompatibility. In this study we intend to derive a plan to improve the bonding strength of Parylene-C coating with the SUS304 base material for medical use which can be applied to various medical fields such as needles, micro needles and in vitro diagnostic device sensors. Through plasma pretreatment the bonding strength between Parylene-C and metal materials was improved. It was confirmed that the coated surface was hydrophobic by measuring the contact angle and the improvement of the surface roughness of the sample manufactured through CNC machining was confirmed by measuring the surface roughness with SEM. Through the above results, it is thought that it will be effective in increasing usability and reducing pain in patients by minimizing friction when inserting medical devices and in contact with skin. In addition it can be applied to various application fields such as human implantable stents and catheters, and is expected to improve the performance and lifespan of medical parts.

Keywords

Acknowledgement

본 연구는 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비(RS-2022-00155736) 지원에 의한 연구임.

References

  1. S. Ganguli, H. Agrawal, B. Wang, J. F. McDonald, T. M. Lu, G. R. Yang, W. N. Gill, Improved growth and thermal stability of Parylene films, J. Vac. Sci. Technol. A, 15 (1997) 3138. https://doi.org/10.1116/1.580858
  2. S. W. Youn, H. Goto, M. Takahashi, M. Ogiwara, R. Maeda, Thermal imprint process of parylene for MEMS applications, Key Eng. Mater., 931 (2007) 340-341.
  3. T. J. Lee, J. H. Lee, C. H. Park, Characterization of parylene deposition process for the passivation of orgarnic light emitting diodes, Korean J. Chem. Eng., 19 (2002) 722. https://doi.org/10.1007/BF02699324
  4. T. Stanczyk, B. Ilic, P. J. Hesketh, Member, IEEE, J. G. Boyd, IV, A microfabricated electrochemical actuator for large displacements, J. Microelectromechanical Syst., 9 (2000) 314. https://doi.org/10.1109/84.870057
  5. J. B. Fortin, T. M. Lu, Mass spectrometry study during the vapor deposition of poly-para-xylylene thin films, J. Vac. Sci. Technol., A 18 (2000) 2459. https://doi.org/10.1116/1.1289773
  6. J. J. Senkevich, G. R. Yang, T. M. Lu, Aqueous ammonium sulfide to modify the surface of low k dielectric thin films, Colloids Surf, A Physicochem Eng Asp, 214 (2003) 119. https://doi.org/10.1016/S0927-7757(02)00363-1
  7. W. C. Kuo, C. W. Chen, C. M. Liu, Design and fabrication of a high-aspect-ratio parylene-based comb-drive actuator for large displacements at a low driving force, J. Micromech. Microeng., 23 (2013) 065021-065027. https://doi.org/10.1088/0960-1317/23/6/065021
  8. Y. Suzuki, Y. C. Tai, Micromachined high-aspect-ratio parylene spring and its application to low-frequency accelerometers, J. Microelectromechan. Syst., 15 (2006) 1364-1370. https://doi.org/10.1109/JMEMS.2006.879706
  9. B. J. Kim, E. Meng, Micromachining of parylene C for bioMEMS, Polym. Adv. Technol., 27 (2016) 564-576. https://doi.org/10.1002/pat.3729
  10. M. G. Cepa, K. Engvall, M. Hakkarainen, A. Kotarba, Recent progress on parylene C polymer for biomedical applications: a review, Prog. Org. Coat., 140 (2020) 105493. https://doi.org/10.1016/j.porgcoat.2019.105493
  11. E. Delivopoulos, A. F. Murray, N. K. MacLeod, J. C. Curtis, Guided growth of neurons and glia using microfabricated patterns of parylene-C on a SiO2 background, Biomaterials, 30 (2009) 2048-2058. https://doi.org/10.1016/j.biomaterials.2008.12.049
  12. M. F. Nichols, The challenges for hermetic encapsulation of implanted devices, Crit. Rev. Biomed. Eng., 22 (1994) 39.
  13. K. G. Pruden, K. Sinclair, S. Beaudoin, Characterization of parylene-N and parylene-C photooxidation, J. Polym. Sci Part A: Polym. Chem., 41 (2003) 1486. https://doi.org/10.1002/pola.10681
  14. D. Martini, K. Shepherd, R. Sutcliffe, J. Kelber, H. Edwards, R. S. Martin, Modification of parylene AF-4 surfaces using activated water vapor, Appl. Surf. Sci., 141 (1999) 89-100. https://doi.org/10.1016/S0169-4332(98)00609-6
  15. S. C. Choi, Improvement of the adhesion properties between aluminum and a parylene-C film by using the duoplasmatron ion source, J. Korean Vacuum Soc., 21 (2012) 78-85. https://doi.org/10.5757/JKVS.2012.21.2.78
  16. Y. H. Ham, D. A. Shutov, K. H. Baek, L. M. Do, K. S. Kim, C. W. Lee, K. H. Kwon, Surface characteristics of parylene-C films in an inductively coupled O2/CF4 gas plasma, Thin Solid Films, 518 (2010) 6378-6381. https://doi.org/10.1016/j.tsf.2010.03.138
  17. Standard test method for tension testing of calcium phosphate and metallic coatings, ASTM F1147-05.
  18. standard test method for shear testing of calcium phosphate coatings and metallic coatings, ASTM F1044-05.
  19. T. Y. Chang, V. G. Yadav, S. D. Leo, A. Mohedas, B. Rajalingam, C. L. Chen, S. Selvarasah, M. R. Dokmeci, A. Khademhosseini, Cell and protein compatibility of parylene-C surfaces, Langmuir, 23 (2007) 11718-11725. https://doi.org/10.1021/la7017049
  20. S. H. Kim, D. J. Choi, J. S. Lee, H. S. Choi, Surface characterization of the d-PMMA thin films treated by oxygen plasma, Polymer(korea), 33 (2009) 263-267.
  21. M. G. Cepa, K. Riedlova, W. Kulig, L. Cwiklik, A. Kotarba, Functionalization of the parylene C surface enhances the nucleation of calcium phosphate: combined experimental and molecular dynamics simulations approach, ACS Appl, Mater, Interfaces, 12 (2020) 12426-12435. https://doi.org/10.1021/acsami.9b20877
  22. N. Abolhassani, R. Patel, M. Moallem, Needle insertion into soft tissue: A survey, Medical Engineering & Physics, Vol. 29 (2007) 413-431. https://doi.org/10.1016/j.medengphy.2006.07.003
  23. A. Okamura, C. Simone, M. O. Leary, Force modeling for needle insertion into soft tissue, IEEE. Trans. Biomed. Eng., 51 (2007) 1707-1716. https://doi.org/10.1109/tbme.2004.831542
  24. D. Armitage, K. Parker, T. Parker, D. Grant, Platelet response to nickel titanium, International Conference of Shape Mem. Superelasticity Tech., Belgium: Antverpen, (1999) 226-239.