DOI QR코드

DOI QR Code

Grain size measurement based on marked watershed algorithm

유역분할 알고리즘을 이용한 결정립 크기 측정

  • Kim, Beomsoo (Department of Mechanical System Engineering, Gyeongsang National University) ;
  • Yoon, Sangdoo (Department of Mechanical System Engineering, Gyeongsang National University) ;
  • Kwon, Jaesung (Department of Mechanical System Engineering, Gyeongsang National University) ;
  • Choi, Sungwoong (Department of Mechanical System Engineering, Gyeongsang National University) ;
  • Noh, Jungpil (Department of Energy Mechanical Engineering, Gyeongsang National University) ;
  • Yang, Jeonghyeon (Department of Mechanical System Engineering, Gyeongsang National University)
  • 김범수 (경상국립대학교 기계시스템공학과) ;
  • 윤상두 (경상국립대학교 기계시스템공학과) ;
  • 권재성 (경상국립대학교 기계시스템공학과) ;
  • 최성웅 (경상국립대학교 기계시스템공학과) ;
  • 노정필 (경상국립대학교 에너지기계공학과) ;
  • 양정현 (경상국립대학교 기계시스템공학과)
  • Received : 2022.12.13
  • Accepted : 2022.12.21
  • Published : 2022.12.31

Abstract

Grain size of material is important factor in evaluating mechanical properties. Methods for grain size determination are described in ASTM grain size standards. However, conventional method require pretreatment of the surface to clarify grain boundaries. In this study, the grain size from the surface image obtained from scanning electron microscope was measured using the watershed algorithm, which is a region-based method among image segmentation techniques. The shapes of the crystals are similar to each other, but the size and growth height are different. In addition, crystal grains are adjacent to each other, so it is very similar to the shape image of the topography. Therefore, grain boundaries can be efficiently detected using the Watershed algorithm.

Keywords

References

  1. C. A. P. Orta, J. D. M. Santibanez, F. M. Guerrero, I. R. T. Villalobos, Method for grain size determination in carbon steels based on the ultimate opening, Measurement, 133 (2019) 193-207. https://doi.org/10.1016/j.measurement.2018.09.068
  2. B. Flipon, V. Grand, B. Murgas, A. Gaillac, A. Nicolayy, N. Bozzolo, M. Bernacki, Grain size characterization in metallic alloys using different microscopy and post-processing techniques, Mater. Charact., 174 (2021) 110977. https://doi.org/10.1016/j.matchar.2021.110977
  3. X. J. Wang, X. J. Sun, C. Song, H. Chen, S. Tong, W. Han, F. Pan, Grain size-dependent mechanical properties of a high-manganese austenitic steel, Acta Metall. Sin., 32 (2019) 746-754. https://doi.org/10.1007/s40195-018-0828-z
  4. M. Naghizadeh, H. Mirzadeh, Effects of grain size on mechanical properties and work-hardening behavior of AISI 304 austenitic stainless steel, Steel Res. Int., 90 (2019) 1900153. https://doi.org/10.1002/srin.201900153
  5. K. P. Mingard, B. Roebuck, E. G. Bennett, M. G. Gee, H. Nordenstrom, G. Sweetman, P. Chan, Comparison of EBSD and conventional methods of grain size measurement of hardmetals, Int. J. Refract. Met. Hard Mater., 27 (2009) 213-223. https://doi.org/10.1016/j.ijrmhm.2008.06.009
  6. S. Piazolo, V. G. Sursaeva, D. J. Prior, Optical grain size measurements: What is being measured? comparative study of optical and EBSD grain sizes determination in 2D Al foil, Mater. Sci. Forum, 213 (2005) 495-497.
  7. S. H. Kim, J. H. Kang, S. Z. Han, Grain size determination of copper film by electron backscatter diffraction, Kor. J. Met. Mater., 48 (2010) 847-855. https://doi.org/10.3365/kjmm.2010.48.09.847
  8. J. H. Kang, S. H. Kim, Sample preparation for EBSD analysis: tips for metals with delicate surfaces, Kor. J. Met. Mater. 48 (2010) 730-740. https://doi.org/10.3365/kjmm.2010.48.08.730
  9. J. J. Friel, S. Wright, S. Sitzman, ASTM grain size by EBSD - a new standard, Microsc. Microanal., 17 (2011) 838-839. https://doi.org/10.1017/S143192761100506X
  10. K. Parvati, B. S. Prakasa, M. Mariya, Image segmentation using gray-scale morphology and marker-controlled watershed transformation, Discrete Dyn. Nat. Soc., 2008 (2008) 384346.
  11. J. F. Rivest, S. Beucher, J. P. Delhomme, Marker-controlled segmentation: an application to electrical borehole imaging, J. Electron. Imaging., 1 (1992) 136-142. https://doi.org/10.1117/12.55184
  12. G. Borgefors, Distance transformations in digital images, Comput. Graph. Image Process., 34 (1986) 344-371. https://doi.org/10.1016/S0734-189X(86)80047-0
  13. R. Fabbri, L. D. F. C., Julio C. Torelli, O. M. Bruno, 2D Euclidean distance transform algorithms: A comparative survey, ACM Comput. Surv., 40 (2008) 1-44.
  14. J. Hassan, A. A. Majid, A. Jalil, Welding defect detection and classification using geometric features, 2012 10th International Conference on Frontiers of Information Technology, IEEE, (2012) 139-144.