DOI QR코드

DOI QR Code

Optimization of charge and multiplication layers of 20-Gbps InGaAs/InAlAs avalanche photodiode

  • Sim, Jae-Sik (Quantum Optics Research Section, Electronics and Telecommunications Research Institute) ;
  • Kim, Kisoo (Photonic Convergence Components Research Section, Electronics and Telecommunications Research Institute) ;
  • Song, Minje (Photonic Convergence Components Research Section, Electronics and Telecommunications Research Institute) ;
  • Kim, Sungil (Photonic Convergence Components Research Section, Electronics and Telecommunications Research Institute) ;
  • Song, Minhyup (Photonic Convergence Components Research Section, Electronics and Telecommunications Research Institute)
  • Received : 2020.11.17
  • Accepted : 2021.04.08
  • Published : 2021.10.01

Abstract

We calculated the correlation between the doping concentration of the charge layer and the multiplication layer for separate absorption, grading, charge, and multiplication InGaAs/InAlAs avalanche photodiodes (APDs). For this purpose, a predictable program was developed according to the concentration and thickness of the charge layer and the multiplication layer. We also optimized the design, fabrication, and characteristics of an APD for 20 Gbps application. The punch-through voltage and breakdown voltage of the fabricated device were 10 V and 33 V, respectively, and it was confirmed that these almost matched the designed values. The 3-dB bandwidth of the APD was 10.4 GHz, and the bit rate was approximately 20.8 Gbps.

Keywords

Acknowledgement

This work was supported by the Civil Military Cooperation Center funded by the Ministry of Defense (Grant 20NB1400). R&D Program Number: 17-CM-AS-19 (2017.06.23 to 2020.06.22).

References

  1. J. C. Campbell, Recent advances in telecommunications avalanche photodiodes, J. Lightwave. Tech. 25 (2007), no. 1, 109-121. https://doi.org/10.1109/JLT.2006.888481
  2. Q. Y. Zeng et al., Dependence of dark current on carrier lifetime for InGaAs/InP avalanche photodiodes, Opt. Quantum Electron. 47 (2015), no. 7, 1671-1677. https://doi.org/10.1007/s11082-014-0024-y
  3. Y. Yu, B. Liu, and Z. Chen, Analyzing the performance of pseudorandom single photon counting ranging Lidar, Appl. Optics 57 (2018), no. 27, 7733-7739. https://doi.org/10.1364/AO.57.007733
  4. A. Rouvie et al., High gain bandwidth product over 140-GHz planar junction AlInAs avalanche photodiodes, IEEE Photon. Technol. Lett. 20 (2008), no. 6, 455-457. https://doi.org/10.1109/LPT.2008.918229
  5. S. G. Park et al., Temperature, current, and voltage dependences of junction failure in PIN photodiodes, ETRI J. 28 (2006), no. 5, 555-560. https://doi.org/10.4218/etrij.06.0105.0250
  6. K. Czuba, J. Jurenczyk, and J. Kaniewski, Comprehensive analysis of new near-infrared avalanche photodiode structure, J. Appl. Remote Sensing. 8 (2014), no. 084999, 1-8.
  7. J. Burm et al., Edge gain suppression of a planar-type InGaAs-InP avalanche photodiodes with thin multiplication layers for 10-Gb/s applications, IEEE Photon. Technol. Lett. 16 (2004), no. 7, 1721-1723. https://doi.org/10.1109/LPT.2004.829546
  8. P. Yuan et al., A new look at impact ionization-Part II: Gain and noise in short avalanche photodiodes, IEEE Trans. Electron Dev. 46 (1999), no. 8, 1632-1639. https://doi.org/10.1109/16.777151
  9. F. Capasso et al., Impact ionization rates for electrons and holes in Al0.48In0.52As, Appl. Phys. Lett. 45, (1984), no. 9, 968-970. https://doi.org/10.1063/1.95467
  10. Y. L. Goh et al., Avalanche multiplication in InAlAs, IEEE Trans. Electron Devices 54 (2007), no. 1, 11-16. https://doi.org/10.1109/TED.2006.887229
  11. T. Nakata et al., Multiplication noise characterization of InAlAs-APD with heterojunction, IEEE Photon. Technol. Lett. 21 (2009), no. 24, 1852-1854. https://doi.org/10.1109/LPT.2009.2032783
  12. L. J. Tan et al., Temperature dependence of avalanche breakdown in InP and InAlAs, IEEE J. Quantum Electron. 46 (2010), no. 8, 1153-1157. https://doi.org/10.1109/JQE.2010.2044370
  13. J. S. Huang et al., Temperature dependence study of mesa-type InGaAs/InAlAs avalanche photodiode characteristics, Adv. Optoelectron. (2017), 1-5.
  14. J. S. Huang et al., Highly reliable, cost-effective and temperature-stable top-illuminated avalanche photodiode (APD) for 100G inter-datacenter ER4-lite applications, in PHOTOICS, Science and Technology Publications, Funchal, Portugal, 2018, pp. 119-124.
  15. N. Li et al., InGaAs/InAlAs avalanche photodiode with undepleted absorber, Appl. Phys. Lett. 82 (2003), no. 13, 2175-2177. https://doi.org/10.1063/1.1559437
  16. S. Shimizu et al., 40 Gbit/s waveguide avalanche photodiode with p-type absorption layer and thin InAlAs multiplication layer, Electron. Lett. 43 (2007), no. 8, 476-477. https://doi.org/10.1049/el:20070344
  17. Y. Zhao et al., InGaAs-InP avalanche photodiodes with dark current limited by generation recombination, Opt. Express 19 (2011), no. 9, 8546-8556. https://doi.org/10.1364/OE.19.008546
  18. G. Ribordy et al., Photon counting at telecom wavelengths with commercial InGaAsP/InP avalanche photodiodes: Current performance, J. Mod. Opt. 51 (2004), no. 9-10, 1381-1398. https://doi.org/10.1080/09500340410001677094
  19. C. L. F. Ma, M. J. Deen, and L. E. Tarof, Device parameter extraction in separate absorption, grading, charge, and multiplication InP/InGaAs avalanche photodiodes, IEEE Trans. Electron Devices 42 (1995), no. 12, 2070-2079. https://doi.org/10.1109/16.477763
  20. L. W. Cook, G. E. Bulman, and G. E. Stillman, Electron and hole impact ionization coefficients in InP determined by photo-multiplication measurements, Appl. Phys. Lett. 40 (1982), no. 7, 589-591. https://doi.org/10.1063/1.93190
  21. R. J. McIntyre, Multiplication noise in uniform avalanche diodes, IEEE Trans. Electron. Devices 13 (1966), no. 1, 164-168. https://doi.org/10.1109/T-ED.1966.15651
  22. P. Bhattacharya, Semiconductor Optoelectronic Devices, 2nd ed., Prentice Hall, Upper Saddle River, NJ, USA, 1997.
  23. G. M. Williams et al., Multi-gain-stage InGaAs avalanche photodiode with enhanced gain and reduced excess noise, IEEE J. Electron. Devices Soc. 1 (2013), no. 2, 54-65. https://doi.org/10.1109/JEDS.2013.2258072
  24. J. S. Sim et al., A four-channel laser array with four 10Gbps monolithic EAMs each integrated with a DBR laser, ETRI J. 28 (2006), no. 4, 533-536. https://doi.org/10.4218/etrij.06.0205.0119
  25. J. D. Kim et al., Compact 2.5Gb/s burst-mode receiver with optimum APD gain for XG-PON 1 and GPON applications, ETRI J. 31 (2009), no. 5, 622-624. https://doi.org/10.4218/etrij.09.0209.0227
  26. J. D. Kim, J. J. Lee, and S. Lee, Physical media dependent prototype for 10-gigabit-capable PON OLT, ETRI J. 35 (2013), no. 2, 245-252. https://doi.org/10.4218/etrij.12.0112.0441