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1 |  INTRODUCTION

Innovations and developments in multimedia equipment have 
made it possible to display high- quality videos. According 
to the Cisco visual network index [1], mobile data traffic 
will increase by seven times from 2017 to 2022, and videos 
will account for approximately 80% of mobile data traffic 
by 2022. Additionally, as video compression and wireless 
network technologies continue to develop rapidly, end users 
will become increasingly accustomed to resource- demanding 
multimedia services with superior quality [2].

Based on the strict deadlines for presentation in video 
streaming, the limitations of various network conditions 

and transport protocols may lead to video jitter or in-
terruptions. Therefore, based on the stringent bandwidth 
and delay requirements of video streaming services, 
providing high- quality video to end users remains a 
challenge.

As the study of video streaming has shifted from the 
network- centric solutions to the human- centric solutions, an-
alyzing user- perceived experiences regarding video quality 
has become a hot research topic [3– 4]. Quality of experience 
(QoE) is considered as a more important metric than quality 
of service because it considers user- perceived quality directly 
[5]. Therefore, it is crucial to identify and quantify the major 
factors influencing the QoE of video streaming.
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The quality of experience (QoE) of video streaming is degraded by playback inter-
ruptions, which can be mitigated by the playout buffers of end users. To analyze 
the impact of playout buffer dynamics on the QoE of wireless adaptive hypertext 
transfer protocol (HTTP) progressive video, we model the playout buffer as a G/D/1 
queue with an arbitrary packet arrival rate and deterministic service time. Because 
all video packets within a block must be available in the playout buffer before that 
block is decoded, playback interruption can occur even when the playout buffer is 
non- empty. We analyze the queue length evolution of the playout buffer using dif-
fusion approximation. Closed- form expressions for user- perceived video quality are 
derived in terms of the buffering delay, playback duration, and interruption probabil-
ity for an infinite buffer size, the packet loss probability and re- buffering probability 
for a finite buffer size. Simulation results verify our theoretical analysis and reveal 
that the impact of playout buffer dynamics on QoE is content dependent, which can 
contribute to the design of QoE- driven wireless adaptive HTTP progressive video 
management.
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Over the past decade, determining the QoE of video 
streaming based on the user datagram protocol (UDP) has 
attracted significant research attention, and many QoE im-
provement techniques have been proposed. Most of these 
techniques focus on optimizing technical video parameters 
(for example, codecs, frame rates, and resolution), reducing 
the video distortion caused by network imperfections (for 
example, packet loss, delay, and jitter) [6] and adapting the 
playback rate and strategy at the receiver [7].

Nowadays, a huge amount of media content is available 
through progressive download techniques based on the hy-
pertext transfer protocol (HTTP) and transmission control 
protocol (TCP) [8]. A media player at a receiver is typically 
deployed with a playout buffer that stores downloaded video 
packets. Therefore, a certain number of video packets can be 
buffered before decoding and displaying them, which delays 
the start of video playback for a short duration to alleviate 
the variable delay in packet transmission. Moreover, packet 
retransmission can mitigate the video distortion caused by 
packet loss, particularly in wireless networks.

However, video playout is still affected by the limitations 
of varying network conditions and transport protocols, which 
can be reflected by the packet arrival process at the playout 
buffer. Technical video parameters also influence the behav-
iors of the video playout buffer, including the video packet 
departure process and video playback. Therefore, it is import-
ant to understand how playout buffer dynamics influence the 
QoE of adaptive HTTP progressive video. In this study, we 
focus on buffer management.

The impact of network dynamics on user- perceived video 
quality was analyzed in [9] by modeling the playout buffer 
as a G/G/1 queue and deriving closed- form expressions for 
video quality using diffusion approximation. An upper bound 
for the analysis of video interruption probability under the 
effects of finite media file sizes was presented in [10].

Generally, a media file is partitioned into blocks, each 
of which contains several packets. If some packets within a 
block are not available at the receiver before that block is de-
coded, then a playback interruption will occur [11]. However, 
in related works, it has been assumed that a playback inter-
ruption will only occur if the playout buffer is empty. The ef-
fects of block length on user- perceived video quality have not 
been considered. Based on these motivations, we investigate 
the impact of playout buffer dynamics on the QoE of wireless 
adaptive HTTP progressive video.

In this study, we first develop an analytical framework to ex-
amine the effects of playout buffer dynamics on user- perceived 
video quality. With arbitrary packet arrival rates and a deter-
ministic packet service time, the playout buffer is modeled as 
a G/D/1/∞ queue in the case of an infinite buffer size and a 
G/D/1/N queue in the case of a finite buffer size. By using the 
diffusion approximation method, we analyze the queue length 
evolution of the playout buffer. Closed- form expressions for 

user- perceived video quality are also derived. The obtained 
analytical results are validated using simulations. The primary 
contributions of this paper can be summarized as follows.

• Modeling: The setting of network protocols is generally 
determined by the mean and variance of the video packet 
arrival rate at the playout buffer. It is assumed that the 
inter- arrival interval of packets follows a general distri-
bution. Because all video packets within a block must be 
available before that block is decoded, we assume that the 
packet departure process from the playout buffer is de-
terministic. If the buffer size is sufficiently large to store 
a complete media file, we model the playout buffer as a 
G/D/1/∞ queue. Otherwise, we model it as a G/D/1/N 
queue. Moreover, we consider a case in which video play-
back interruption occurs even when the playout buffer is 
non- empty. The effects of both the video block length and 
finite media file size on QoE are also studied.

• Solution: By using the diffusion approximation method, 
we analyze the queue length evolution of the playout buf-
fer. We derive closed- form expressions for user- perceived 
video quality for an infinite buffer size in terms of the buff-
ering delay, playback duration, and playback interruption 
probability. We also derive closed- form expressions for a 
finite buffer size in terms of the packet loss probability and 
re- buffering probability. The user- perceived video quality 
is characterized by the playout buffer dynamics, specif-
ically the mean and variance of the video packet arrival 
rate, video packet departure rate, playback threshold, and 
video block length. The impact of playout buffer dynamics 
on the QoE of wireless adaptive HTTP progressive video 
can be evaluated based on our analytical results.

• Understanding: Our study provides insights into the most 
important aspects of playout buffer dynamics influencing 
the QoE of wireless adaptive HTTP progressive video. 
This enhanced understanding contributes to the design of 
QoE- driven network control and QoE- aware playout buffer 
management strategies.

The remainder of this paper is organized as follows. We 
present an overview of related work in Section 2. Section 3 
presents our system model of the wireless adaptive HTTP pro-
gressive video and queue model of the playout buffer at the 
receiver. We describe our analytical framework for the cases of 
infinite and finite playout buffer sizes in Section 4 and verify 
the obtained analytical results using simulations in Section 5. 
The conclusions of this study are summarized in Section 6.

2 |  RELATED WORK

Over the past decade, video streaming in wireless networks 
under varying conditions has been widely studied, and various 
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UDP-  and TCP- based video streaming schemes have been pro-
posed [12]. Our work is related to TCP- based video streaming 
and focuses on video quality from the perspective of end users.

User- perceived video streaming quality can be evaluated 
using both subjective and objective methods. Subjective eval-
uation is performed by humans, with the results graded ac-
cording to the mean opinion score [13]. Although subjective 
evaluation directly reflects QoE, it is impractical based on 
large time and resource costs. Therefore, many studies have 
focused on objective evaluation methods for video streaming 
QoE. Khan and others [14] concluded that the effects of ap-
plication and network parameters on video quality distortion 
are content dependent. Ghadiyaram and others [15] presented 
a continuous- time video QoE predictor that accounts for the 
interactions between stalling events, video content, and the 
state of the client- side data buffer. Qian and others [16] stated 
that the main factors relevant to QoE are video coding pro-
files, transmission errors, and buffering occurrence. Duanmu 
and others [17] constructed a video streaming database to 
study human responses to the effects of video compression, 
initial buffering, and playback interruption. To maximize 
video streaming QoE, an estimation framework based on 
re- buffering states and content encoding conditions was pro-
posed in [18]. A video QoE- monitoring prototype platform 
considering bit rates and re- buffering was presented in [19]. 
Eswara and others [20] proposed a learning- based continuous 
QoE evaluation framework that parameterizes QoE evalua-
tion in the playback and re- buffering states. Similar to [20], 
Eswara and others [21] used a recurrent neural network to 
predict continuous QoE based on a complex dataset consid-
ering playback indicators and re- buffering frequency. A pure 
buffer- based HTTP adaptive video streaming scheme for op-
timizing QoE was proposed in [22]. By comparing the effects 
of initial delay on playback interruption, Hossfeld and others 
[23] concluded that playback interruption must be avoided, 
but start- up delay increases as a result of pre- fetching. In [24], 
a buffer size optimization problem was proposed to avoid 
packet dropping caused by buffer overflow. Based on these 
studies, we conclude that the playout buffer has a significant 
influence on QoE, but none of these studies have examined 
the effects of playout buffer dynamics on video streaming 
QoE in an analytical framework.

In [9], by modeling the playout buffer as a G/G/1 queue, 
the authors derived closed- form expressions of the user- 
perceived video quality with an asymptotically large file size. 
In [10], the authors extended the work in [9] and proposed 
an analytical framework for video interruption probability 
with finite media file sizes. Xu and others [25] analyzed star-
vation behavior in a Markovian queue with finite packet ar-
rival. However, in this related work, it was assumed that the 
playback interruption does not occur if the playout buffer is 
non- empty. The effects of both video block length and finite 
media file size on the interruption probability have not been 

addressed. In this study, we model the playout buffer as a 
G/D/1 queue under the assumption of constant video block 
length to analyze starvation behaviors. In particular, we con-
sider the effects of the video block length on user- perceived 
video quality. In our conference paper [26], we discussed the 
effects of playout buffer dynamics on the QoE of adaptive 
HTTP progressive video in the case of an infinite buffer size. 
Further analysis of the work discussed in [26] and the case of 
a finite buffer size will be presented in this paper.

Another type of research has focused on diffusion approx-
imation and its application to queuing systems [27]. Based on 
the diffusion approximation method, transient solutions for 
the queue length with different queue models were presented 
in [28] and [29]. Our work addresses the queue length evo-
lution of the playout buffer using diffusion approximation, 
where the buffer is modeled as a G/D/1 queue.

3 |  SYSTEM MODEL

We first describe the system architecture for wireless adap-
tive HTTP progressive video. We then present queue models 
for the playout buffer for infinite and finite buffer sizes.

Figure 1 presents the process of adaptive HTTP pro-
gressive video in wireless networks. Raw video content is 
encoded and stored in the streaming server. According to re-
quests from end users, pre- stored video content is retrieved 
and segmented into packets. By using the HTTP/TCP/IP 
protocol suite, video packets are transmitted to user termi-
nals under variable network conditions. A playout buffer is 
implemented at the receiver to mitigate the negative influ-
ences of network protocols and varying transmission condi-
tions on video quality. For media playback, video packets are 
discharged from the buffer to be decoded and displayed to 
the end user. Here, we analyze the impact of playout buffer 
dynamics on the QoE of wireless adaptive HTTP progressive 
video from the perspective of the end user.

Based on the limitations of transport protocols and vary-
ing network conditions, video packets arrive at the playout 
buffer with variable delay. We assume that the inter- arrival 
interval of video packets is generally distributed with a mean 
of 1 / λ and variance of υa.

During video encoding, raw video content is partitioned 
into video blocks with w encoded packets per block. For a 
given codec, w is determined by a group of pictures (GOP) 
value, the video content, and packet size. During playback, 
a video block must wait in the playout buffer until all pack-
ets belonging to that block arrive. If the GOP structure and 
frame rate are predetermined, then the video packets within a 
block can be assumed to depart at a constant rate. Therefore, 
we model the inter- departure interval for video packets as a 
distribution with a constant mean of 1/μ, where μ = w / t0, t0 
is the duration of the GOP.
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When the playout buffer is sufficiently large to store an en-
tire media file, buffer evolution can be modeled as a G/D/1/∞ 
queue. Otherwise, it can be modeled as a G/D/1/N queue.

To avoid video starvation, pre- fetching is adopted in most 
streaming applications [30]. In other words, some initial re-
ceived video packets are stored, and media playback is de-
layed for a short duration (called the start- up delay). The 
number of pre- fetched packets is defined as the playback 
threshold. Because a video block with fewer than w packets 
cannot be decoded, the playback threshold must be at least 
w. If the threshold is larger, the start- up delay will be lon-
ger, but the video starvation probability will also be lower. 
Therefore, to balance the trade- off between buffering delay 
and playback interruption, we set the playback threshold as 
w + b, where b > 0.

During video playback, to avoid playback interruption, 
video packets belonging to the next block to be decoded 
should be available in the playout buffer by the time the cur-
rent block finishes playing. Therefore, in contrast with previ-
ous works, we consider a case in which playback interruption 
occurs, and the number of video packets left in the playout 
buffer is non- zero, but is less than w.

Because playout buffer occupancy is strongly related to 
start- up delay and video playback smoothness, we investigate 
HTTP progressive video QoE by analyzing the playout buf-
fer evolution process for cases with infinite and finite buf-
fer sizes when the playback statistics (λ, μ, υa), video block 
length w, and playback threshold w + b are given.

4 |  ANALYTICAL FRAMEWORK

In this section, we first discuss the playout buffer evolution 
process. We then develop an analytical framework to inves-
tigate user- perceived video quality in cases with infinite and 
finite buffer sizes.

4.1 | Case 1: Infinite buffer size

The buffer size can be assumed to be infinite when user ter-
minals have large- volume storage and media files are much 
smaller than the playout buffer.

Figure 2 illustrates the playout buffer evolution process 
with an infinite buffer size during video playout. This pro-
cess consists of two iterative phases: the buffering phase and 
playback phase.

In the buffering phase, video playback is frozen until the 
buffer is charged with w + b (the playback threshold) pack-
ets. Then, the playback phase begins, and video packets are 
discharged from the buffer to be displayed. Under conditions 
with dynamic packet arrival, if the playback of the current 
video block ends and there are fewer than w packets left in 
the playout buffer, then playback interruption occurs, and 
the buffering phase begins again. The buffering phase and 
playback phase iterate until the entire requested video file is 
downloaded or the user stops watching.

Let the random variable Dm denote the duration of the 
buffering phase beginning with m packets left in the buffer, 

F I G U R E  2  Playout buffer evolution process with an infinite 
buffer size [Colour figure can be viewed at wileyonlinelibrary.com]
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where m ranges from 0 to w−1. Because the packet departure 
of the playout buffer is deterministic, m can be an arbitrary 
integer in [0, w−1] with a probability qm = 1 / w. Let the ran-
dom variable Tm denote the duration of the playback phase 
terminating with m packets left in the buffer.

In this case, we evaluate the QoE of adaptive HTTP pro-
gressive video in terms of buffering delay and video play-
back smoothness. Buffering delay represents the duration 
that the user waits for playback to begin, which is denoted 
as Dm. Video playback smoothness is evaluated based on 
the playback duration Tm and playback interruption prob-
ability PI.

As described previously, we model the infinite playout 
buffer as a G/D/1/∞ queue. Let Y(t) denote the buffer length 
at time t. When using the diffusion approximation method, 
the discrete buffer length Y(t) is replaced by a continuous dif-
fusion process X(t), which is modeled as the Brownia motion 
dX(t) = X(T + dt) − X(t) = �dt + G(t)

√
�dt, where G(t) is a 

white Gaussian process with zero mean and unit variance 
[28], β and α are the instantaneous changes in the mean and 
variance of X(t), respectively, which are defined as

Let p(x, t |x0) = Pr{x ≤ X(t) < x + dx |X(0) = x0} denote 
the conditional probability density function (PDF) of X(t) at 
time t, where x0 is the initial queue length. By using diffusion 
approximation, we characterize p(x, t |x0) as

where �(x) is the Dirac delta function. The third expression in 
(2) indicates that diffusion stops when X(t) = xe.

4.1.1 | Buffering delay

The buffering phase begins with m video pack-
ets and terminates with w + b packets in the 

playout buffer. Therefore, the buffering delay 
Dm = min {t|X (0) = m, X (t) = w + b, t > 0}. Because 
the playback is frozen in the buffering phase (μ = 0), 
we model the buffering phase as a diffusion process 
with �D = � and �D = �3�a. Therefore, the conditional 
PDF of X(t) with X(0) = m and X(t) = w + b, namely 
pDm

(x, t|m) = Pr{x ≤ X (t) < x + dx |X (0) = m, X (𝜏)

< w + b, for 0 < 𝜏 < t}, satisfies the diffusion equation as

By solving (3), we obtain

The conditional cumulative density function (CDF) of 
X(t) can be calculated as
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1√
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Therefore, the mean and variance of Dm can be calculated 
as

The start- up delay is the duration of the first buffering 
phase with m = 0 in Dm. We also derive the average buffering 
delay of the buffering phase and its variance as

4.1.2 | Playback duration

The playback phase begins when the playout buffer is charged 
with w + b video packets and ends with m packets remaining in 
the playout buffer, as illustrated in Figure 2. Therefore, the play-
back duration is Tm = min {t|X (0) = w + b, X (t) = m, t > 0}.   
Because we model the playback phase as a diffusion pro-
cess with �T = � − � and �T = �3�a, the conditional 
PDF of X(t) with X(0) = w + b and X(t) = m, namely 
pTm

(x, t|w+b)=Pr{x≤X(t)< x+dx|X(0)=w+b, X(𝜏)>m,

for 0<𝜏 < t}, satisfies the diffusion equation as

By solving (13), we obtain

Therefore, the conditional PDF and MGF of Tm are
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1

w
⋅

w + b − m

|𝜆 − 𝜇 | =
w + 2b + 1

2 |𝜆 − 𝜇 | , 𝜆 − 𝜇 < 0,

(20)

Var (T) = E
[(

E
[
Tm

]
− E [T]

)2
]
=

w2 − 1

12(𝜆 − 𝜇)2
, 𝜆 − 𝜇 < 0.

(21)

PI,m =Pr {t<S�X 0 =w+b, X t =m }=

S

�
0

gTm
t dt

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1, S≥S0, 𝛽T ≤0,

exp

�
−

2𝛽T

𝛼T

w+b−m

�
, S≥S0, 𝛽T >0,

exp

�
−

2S𝛽T w+b−m + w+b−m 2

2𝛼TS

�
, S<S0, 𝛽T ∈ℝ,
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According to (22), we find that the playback interruption 
must occur if the mean arrival rate λ is less than the video 
playback rate μ. Furthermore, even if λ is greater than μ, it is 
possible that video playback will be interrupted because of the 
dynamics of packet arrival and characteristics of video blocks.

4.2 | Case 2: Finite buffer size

Here, we discuss the case of a finite playout buffer size, where 
the media file is larger than the playout buffer. Figure 3 illus-
trates the playout buffer evolution process for a buffer size N 
during video playout.

Because the start and stop conditions for the buffering 
phase are the same in both the cases of infinite and finite 
buffer sizes, the buffering delay analysis in Section 4.1.1 is 
also applicable in this case.

As illustrated in Figure 3, in the playback phase, the 
upper bound on the queue length is the playout buffer 
size N and N > w + b. Once the playout buffer is full, the 
following video packets are dropped, which degrades the 
user- perceived video quality. Therefore, the packet loss 
probability caused by buffer overflow is an important per-
formance metric in this case. PN denotes the packet loss 
probability, which is defined as

Let PBUF be the re- buffering probability, which is the 
probability that playback is interrupted and the playout buffer 
will enter the buffering phase immediately.

By using the diffusion approximation method, we model 
the playback phase in the case of a finite buffer size as

where �T = � − �,�T = �3�a, m ∈ [0, w − 1] with probability 1 
/ w, and E(D) =

w+2b+1

2�
 according to (11).

The diffusion equation in (24) consists of two parts: the 
conditional PDF of X(t) and the probabilities PN and PBUF 
for the two boundaries when the buffer is full and in the 
buffering phase, respectively. 1

E(D)
PBUF� [x − (w + b)] in 

(24) represents the probability that the buffer changes from 
buffering to playback, where 1 / E(D) is the mean change 
rate. �PN� (x − N + 1) represents the probability that the buf-
fer queue length changes from N to N— 1. When the queue 
length is N, video packets depart at a rate μ and newly arriv-
ing video packets are dropped.

By solving (24) in the steady state, denoted 
lim

t→∞

�p(x,t|w+b)

�t
= 0, we obtain

where r = 2�T

�T

=
2(�−�)

�3�a

.

Because ∫ N

0
p (x, t|w + b) dx + PBUF + PN = 1, we can ob-

tain the packet loss probability PN and re- buffering probabil-
ity PBUF as follows:

(22)
PI =

⎧
⎪⎪⎨⎪⎪⎩

1, 𝛽T =𝜆−𝜇≤0,

e
−

2𝛽T

𝛼T
b+1

1−e
−

2𝛽T

𝛼T
w

w 1−e
−

2𝛽T

𝛼T

, 𝛽T =𝜆−𝜇>0.

(23)PN = lim
t→∞

Pr {X (t) = N}

(24)

⎧
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�p (x, t�w+b)

�t
=
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2

�2p (x, t�w+b)

�x2
−�T
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�x

+
1

E(D)
PBUF� [x−(w+b)]+�PN� (x−N+1) ,

lim
x→m

�
�T

2

�p (x, t�w+b)

�x
−�Tp (x, t�w+b)

�
=

1

E(D)
PBUF,

lim
x→N

�
�T

2

�p (x, t�w+b)

�x
−�Tp (x, t�w+b)

�
=−�PN,

(25)

p (x,∞�w+b)=

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

PBUF

𝛽TE(D)
(erx−1) , 0< x≤w+b,

PBUF

𝛽TE(D)

�
1−e−r(w+b)

�
erx

, w+b< x≤N−1,

𝜇PN

𝛽T

�
1−er(x−N)

�
, N−1< x≤N,

(26)PN =
er(N−1)

[
1 − e− r(w+b)

]
�E (D) (1 − e− r)

PBUF,

F I G U R E  3  Playout buffer evolution process with a buffer size N 
[Colour figure can be viewed at wileyonlinelibrary.com]
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5 |  NUMERICAL RESULTS AND 
DISCUSSION

We validate the analytical results discussed above using 
MATLAB- based simulations in this section. In the following 
figures, “analysis” and “simulation” are abbreviated as “ana” 
and “sim,” respectively.

5.1 | Simulation setup

We chose two video clips, namely “Star War IV” and “Silence 
of the Lambs,” from [31]. Both clips are in MPEG- 4 format 
with the same frame rate of 25 fps. The video duration is 1 h, 
and the resolution follows the quarter common intermediate 
format. The GOP structure is IBBPBBPBBPBB. The dura-
tion of the GOP, denoted by t0, is 0.48 s. The video frame sta-
tistics are listed in Table 1, which shows that the frame size 
is related to the quality of the videos. The video frames are 
segmented into IP packets with a data payload size of 1200 
bytes. λ / μ is defined as the traffic density.

5.2 | Case 1: Infinite buffer size

In this subsection, we present the analytical and simulation 
results for the start- up delay and video playback interruption 
probability for an infinite buffer size. The video packet ar-
rival process is assumed to follow a Poisson distribution and 
the inter- arrival interval of the video packets is exponentially 
distributed with a mean of 1 / λ and variance of 1 / λ2.

Figure 4 shows the CDFs of the start- up delays for differ-
ent traffic densities, where b = 3w. From Figure 4, we can 
observe that as the traffic density increases, the mean start- up 
delay decreases because the corresponding CDF curve moves 

to the left and the variance decreases because the CDF curve 
becomes compressed in width. Moreover, for a given traf-
fic density, as the video quality enhances, the mean start- up 
delay increases because the corresponding CDF curve moves 
to the right and the variance decreases because the CDF 
curve becomes compressed in width.

In addition, to limit the start- up delay to less than 2 s, the 
mean packet arrival rate λ must be at least 2 times and 1.2 
times the playback rate μ for low-  and high- quality videos, re-
spectively. Therefore, for the given playback threshold, more 
traffic density should be allocated to the low- quality video 
than the high- quality video.

The CDFs of the start- up delays for different playback 
thresholds are presented in Figure 5, where the traffic den-
sity, λ / μ, is set to 2 and 1.2 for the low-  and high- quality 
videos, respectively.

From Figure 5, we can observe that for a given traffic 
density with different video qualities, both the mean and 

(27)P
N
=

{
−�2 (w+b) (1−e

−r)

�(�−�)er(N−1)
[
1−e−r(w+b)

] + �

�−�

}−1

,

(28)

PBUF =

{
2�2er(N−1)

[
1 − e− r(w+b)

]
�(� − �)(w + 2b + 1) (1 − e− r)

−
2� (w + b)

(� − �)(w + 2b + 1)

}−1

.

T A B L E  1  Video frame statistics

Video clip Quality
Mean frame size 
(bytes)

μ = w/t0 
(packets 
per second)

Star Wars IV Low 270 6.25

Silence of the 
Lambs

high 2900 60.417 F I G U R E  4  CDFs of the start- up delay for different traffic 
density: (A) low- quality video and (B) high- quality video [Colour 
figure can be viewed at wileyonlinelibrary.com]

(A)

(B)
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variance of the start- up delay increase as the playback thresh-
old increases because both the corresponding CDF curves in 
Figure 5A and 5B move to the right and expand in width. 
Therefore, for a given traffic density, a small playback thresh-
old is preferable to achieve a small mean and variance for the 
start- up delay.

Figure 6 presents the playback interruption probabilities 
for different playback thresholds and traffic densities. One 
can see that the playback interruption probability decreases 
as the traffic density increases. In addition, the playback 
interruption probability of the playout buffer with a larger 
playback threshold decreases more rapidly as the traffic 
density increases. Therefore, for a given traffic density with 
different video qualities, a larger playback threshold is pref-
erable to achieve a lower playback interruption probability. 
Additionally, for a given playback threshold, to obtain a con-
sistent playback interruption probability, the traffic density 
for the low- quality video should be greater than that for the 
high- quality video.

Therefore, according to Figures 5 and 6, the playback 
threshold of the playout buffer must be set properly to 
achieve a proper trade- off between the start- up delay and 
video playback interruption probability. Figures 4 and 6 
demonstrate that the impact of playout buffer dynamics 
on QoE is content dependent and that more traffic density 
should be allocated to low- quality videos than high- quality 
videos.

Moreover, the obtained analytical results agree well with 
all of the simulation results, thereby verifying the accuracy of 
our theoretical analysis for an infinite buffer size.

5.3 | Case 2: Finite buffer size

In this subsection, we validate the analytical and simulation 
results for the packet loss probability and re- buffering proba-
bility in the case of a finite buffer size. The arrival process of 
video packets is still assumed to follow a Poisson distribution.

F I G U R E  5  CDFs of the start- up delays for different playback 
thresholds: (A) low- quality video with λ/μ = 2 and (B) high- 
quality video with λ/μ = 1.2 [Colour figure can be viewed at 
wileyonlinelibrary.com]

delay

delay

(A)

(B)

F I G U R E  6  Interruption probabilities for different playback 
thresholds and traffic densities: (A) low- quality video and (B) high- 
quality video [Colour figure can be viewed at wileyonlinelibrary.com]

(A)

(B)
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Figure 7 presents the impact of traffic density on the 
packet loss probability, PN, where N = 1000 packets and b = 
5w. In Figure 7, one can see that the packet loss probability 
increases as the traffic density increases. With a higher traffic 
density, more video packets are stored in the playout buffer, 
and the buffer overflows more easily.

In addition, given a traffic density near one, which indi-
cates that the packet arrival rate is almost the same as the 
packet departure rate, the packet loss probability for the low- 
quality video is smaller than that for the high- quality video.

The effects of traffic density on the re- buffering prob-
ability, PBUF, are presented in Figure 8, where N = 1000 
packets and b = 5w. From Figure 8, we can observe that the 
re- buffering probability decreases as the traffic density in-
creases. With a higher traffic density, more video packets are 
stored in the playout buffer, and the video playback becomes 
more difficult to interrupt.

Moreover, for different video qualities, the effect of traf-
fic density on the re- buffering probability for the low- quality 

video is weaker than that for the high- quality video. In addi-
tion, for a given traffic density, the re- buffering probability 
for the low- quality video is smaller than that for the high- 
quality video.

Figures 7 and 8 show that for a given playback threshold 
and buffer size, the playout buffer dynamics must be con-
trolled properly to achieve a suitable trade- off between packet 
loss probability and re- buffering probability.

Moreover, it is clear that the analytical results agree well 
with the simulation results in the case of a finite buffer size.

6 |  CONCLUSIONS

In this study, we analyzed the influence of playout buffer 
dynamics on the QoE of wireless adaptive HTTP pro-
gressive video. We modeled the playout buffer at the 
receiver as a G/D/1/∞ queue for an infinite buffer size 
and G/D/1/N queue for a finite buffer size, with arbitrary 

F I G U R E  7  Packet loss probabilities for different traffic densities: 
(A) low- quality video and (B) high- quality video [Colour figure can be 
viewed at wileyonlinelibrary.com]

(A)

(B)
F I G U R E  8  Re- buffering probabilities for different traffic 
densities: (A) low- quality video and (B) high- quality video [Colour 
figure can be viewed at wileyonlinelibrary.com]

(A)

(B)
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packet arrival and deterministic service time. By diffusion 
approximation, we developed an analytical framework to 
derive closed- form expressions for user- perceived video 
quality. Simulation results verified the accuracy of our 
theoretical analysis.

This work revealed that the impact of playout buffer dy-
namics on QoE is content dependent and that the effect on 
high- quality videos is stronger than that on low- quality vid-
eos. We also determined that well- controlled playout buffer 
dynamics contribute to achieving high user- perceived video 
quality.

In the future, we will study the influence of playout 
buffer dynamics on the QoE of wireless adaptive HTTP 
progressive video streaming with a scalable bit rate and de-
sign QoE- driven wireless adaptive HTTP progressive video 
management schemes based on the proposed analytical 
framework.
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