DOI QR코드

DOI QR Code

Additional degree of freedom in phased-MIMO radar signal design using space-time codes

  • Vahdani, Roholah (Department of Electrical and Computer Engineering, Malek Ashtar University of Technology) ;
  • Bizaki, Hossein Khaleghi (Department of Electrical and Computer Engineering, Malek Ashtar University of Technology) ;
  • Joshaghani, Mohsen Fallah (Department of Electrical and Computer Engineering, Malek Ashtar University of Technology)
  • Received : 2020.02.01
  • Accepted : 2020.08.12
  • Published : 2021.08.01

Abstract

In this paper, an additional degree of freedom in phased multi-input multi-output (phased-MIMO) radar with any arbitrary desired covariance matrix is proposed using space-time codes. By using the proposed method, any desired transmit covariance matrix in MIMO radar (phased-MIMO radars) can be realized by employing fully correlated base waveforms such as phased-array radars and simply extending them to different time slots with predesigned phases and amplitudes. In the proposed method, the transmit covariance matrix depends on the base waveform and space-time codes. For simplicity, a base waveform can be selected arbitrarily (ie, all base waveforms can be fully correlated, similar to phased-array radars). Therefore, any desired covariance matrix can be achieved by using a very simple phased-array structure and space-time code in the transmitter. The main advantage of the proposed scheme is that it does not require diverse uncorrelated waveforms. This considerably reduces transmitter hardware and software complexity and cost. One the receiver side, multiple signals can be analyzed jointly in the time and space domains to improve the signal-to-interference-plus-noise ratio.

Keywords

References

  1. J. Li and P. Stoica, MIMO radar signal processing, Wiley, Hoboken, NJ, USA, 2009.
  2. N. Levanon and E. Mozeson, Radar signals, Wiley, Hoboken, NJ, USA, 2004.
  3. E. Fishler et al., MIMO radar: An idea whose time has come, in Proc. IEEE Radar Conf. (Philadelphia, PA, USA), Apr. 2004, pp. 71-78.
  4. F. Daum and J. Huang, MIMO radar: Snake oil or good idea?, IEEE Aerosp. Electron. Syst. Mag. 24 (2009), no. 5, 8-12. https://doi.org/10.1109/maes.2009.5109947
  5. J. Li and P. Stoica, MIMO radar with co-located antennas, IEEE Signal Process. Mag. 24 (2007), no. 5, 106-114. https://doi.org/10.1109/MSP.2007.904812
  6. A. Hassanien and S. A. Vorobyov, Transmit/receive beamforming for MIMO radar with co-located antennas, in Proc. IEEE Int. Conf. Acoustic, Speech, Signal Process. (Taipei, Taiwan), Apr. 2009, pp. 2089-2092.
  7. E. Fishler et al., Performance of MIMO radar systems: Advantages of angular diversity, in Proc. Asilomar Conf. Signals, Syst. Comput. (Pacific Grove, CA, USA), Nov. 2004, pp. 305-309.
  8. E. Fishler et al., Spatial diversity in radars-models and detection performance, IEEE Trans. Signal Process. 54 (2006), no. 3, 823-838. https://doi.org/10.1109/TSP.2005.862813
  9. P. Stoica, J. Li, and X. Zhu, Waveform synthesis for diversity-based transmit beampattern design, IEEE Trans. Signal Process. 56 (2008), no. 6, 2593-2598. https://doi.org/10.1109/TSP.2007.916139
  10. J. Tang, Y. Wu, and Y. Peng, Diversity order and detection performance of MIMO radar: A relative entropy based study, in Proc. IEEE Radar Conf. (Rome, Italy), May 2008, pp. 1-5.
  11. A. M. Haimovich, R. S. Bluma, and L. Cimini, MIMO radar with widely separated antennas, IEEE Signal Process. Mag. 25 (2008), no. 1, 116-129. https://doi.org/10.1109/MSP.2008.4408448
  12. A. Hassanien and S. A. Vorobyov, Phased-MIMO radar: A tradeoff between phased-array and MIMO radars, IEEE Trans. Signal Process. 58 (2010), no. 6, 3137-3151. https://doi.org/10.1109/TSP.2010.2043976
  13. K. Milne, Phased arrays in radar, in Proc. IEE Tutorial Meet. Phased Array Radar (London, U.K.), Sept. 1989, pp. 2:1-30.
  14. J. Bergin et al., MIMO phased array for SMTI radar, in Proc. IEEE Aerosp. Conf. (Big Sky, MT, USA), Mar. 2008, pp. 1-7.
  15. V. Tarokh, N. Seshadri, and A. R. Calderbank, Space-time codes for high data-rate wireless communication: Performance criterion and code construction, IEEE Trans. Inf. Theory 44 (1998), 744-765. https://doi.org/10.1109/18.661517
  16. A. D. Maio and M. Lops, Design principles of MIMO radar detectors, IEEE Trans. Aerospace Electron. Syst. 43 (2007), no. 3, 886-898. https://doi.org/10.1109/TAES.2007.4383581
  17. G. Cui, H. Li, and M. Rangaswamy, MIMO radar waveform design with constant modulus and similarity constraint, IEEE Trans. Signal Process. 62 (2014), no. 2, 343-353. https://doi.org/10.1109/TSP.2013.2288086
  18. X. Yu et al., Constrained waveform design for co-located MIMO Radar with uncertain steering matrices, IEEE Trans. Aerospace Electron. Syst. 55 (2018), no. 1, 356-370. https://doi.org/10.1109/taes.2018.2852200
  19. G. Cui et al., Space-time transmit code and receive filter design for co-located MIMO radar, IEEE Trans. Signal Process. 65 (2017), no. 1, 343-353.
  20. S. Imani and S. A. Ghorashi, Sequential quasi-convex-based algorithm for waveform design in colocated multiple-input multipleoutput radars, IET Signal Process. 10 (2016), no. 3, 309-317. https://doi.org/10.1049/iet-spr.2015.0181
  21. X. Yu et al., MIMO radar waveform design in the presence of multiple targets and practical constraints, IEEE Trans. Signal Process. 68 (2020), 1974-1989. https://doi.org/10.1109/tsp.2020.2979602
  22. X. Yu et al., MIMO radar Transmit-Receive design for moving target detection in signal-dependent clutter, IEEE Trans. Veh. Technol. 69 (2020), no. 1, 522-536. https://doi.org/10.1109/tvt.2019.2951399
  23. S. M. Karbasi et al., Knowledge-based design of space-time transmit code and receive filter for a multi-input-multi-output radar in signal-dependent interference, IET Radar, Sonar Navig. 9 (2015), no. 8, 1124-1135. https://doi.org/10.1049/iet-rsn.2014.0527
  24. X. Zhang et al., MIMO radar transmit beampattern matching design, IEEE Trans. Signal Process. 63 (2015), no. 8, 2049-2056. https://doi.org/10.1109/TSP.2015.2398841
  25. W. Dinkelbach, On nonlinear fractional programming, Manag. Sci. 13 (1967), no. 7, 492-498. https://doi.org/10.1287/mnsc.13.7.492
  26. C. Ling et al., Biquadratic optimization over unit spheres and semidefinite programming relaxations, SIAM J. Opt. 20 (2009), no. 3, 1286-1310. https://doi.org/10.1137/080729104
  27. I. M. Bomze et al., Standard bi-quadratic optimization problems and unconstrained polynomial reformulations, J. Global Opt. 52 (2012), no. 4, 663-687. https://doi.org/10.1007/s10898-011-9710-5
  28. Z. Q. Luo et al., Semidefinite relaxation of quadratic optimization problems, IEEE Signal Process. Mag. 27 (2010), no. 3, 20-34. https://doi.org/10.1109/MSP.2010.936019
  29. A. I. Barros et al., A new algorithm for generalized fractional programs, Math. Program. 72 (1996), no. 8, 147-175.
  30. J. Li et al., On parameter identifiability of MIMO radar, IEEE Signal Process. Lett. 14 (2007), no. 12, 968-971. https://doi.org/10.1109/LSP.2007.905051
  31. T. D. Backes, Parameter identifiability in a phased-subarray MIMO radar, IEEE Aerospace Conf. (Big Sky, MT, USA), Mar. 2014, pp. 1-6.