Acknowledgement
이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 정보통신산업진흥원의 지원을 받아 수행된 에너지 AI 융합 연구개발 사업임[No. S0317-21-1001]
References
- A. Donders et al., "A gentle introduction to imputation of missing values," J. Clin. Epidemiol., vol. 59, no. 10, 2006, pp. 1087-1091. https://doi.org/10.1016/j.jclinepi.2006.01.014
- https://scikit-learn.org/stable/
- S. Moritz et al., "ImputeTS: Time series missing value imputation in R," R J., vol. 9, no. 1, 2017, p. 207. https://doi.org/10.32614/rj-2017-009
- 윤성철, "결측값의 대치법," 대한예방의학회 예방의학회지, 제37권 제3호, 2004, pp. 209-211.
- D.B. Rubin et al., "Multiple imputation for nonresponse in surveys," vol. 81, Wiley, Hoboken, NJ, USA, 2004.
- B.N. Eskelson et al., "The roles of nearest neighbor methods in imputing missing data in forest inventory and monitoring databases," Scand. J. For. Res., vol. 24, no. 3, 2009, pp. 235-246. https://doi.org/10.1080/02827580902870490
- I.R. White et al., "Multiple imputation using chained equations: Issues and guidance for practice," Stat. Med., vol. 30, no. 4, 2011, pp. 377-399. https://doi.org/10.1002/sim.4067
- A. Mnih et al., "Probabilistic matrix factorization," Adv. Neural Inf. Process. Syst., vol. 20, 2007, pp. 1257-1264.
- H. Yu et al., "Temporal regularized matrix factorization for high-dimensional time series prediction," in Proc. Int. Conf. Neural Inf. Process. Syst., Barcelona, Spain, Dec. 2016, pp. 847-855.
- A. Agarwal et al., "Model agnostic time series analysis via matrix estimation," in Proc. ACM Meas. Anal. Comput. Syst., vol. 2, no. 3, 2018, pp. 1-39.
- O.D. Akyildiz et al., "Probabilistic sequential matrix factorization," arXiv preprint, CoRR, 2019, arXiv:1910.03906
- Z. Zhang, "Missing data imputation: Focusing on single imputation," Ann. of transl. med., vol. 4, no. 1, 2016.
- G.E. Box et al., "Time series analysis: Forecasting and control," Wiley, Hoboken, NJ, USA, 2015.
- X. Chen et al., "Low-rank autoregressive tensor completion for multivariate time series forecasting," arXiv preprint, CoRR, 2020, preprint arXiv:2006.10436
- J. Yoon et al., "Estimating missing data in temporal data streams using multi-directional recurrent neural networks," IEEE Trans. Biomed. Eng., vol. 66, no. 5, 2018, pp. 1477-1490. https://doi.org/10.1109/tbme.2018.2874712
- Z. Che et al., "Recurrent neural networks for multivariate time series with missing values," Sci. Rep. vol. 8, no. 1, 2018, pp. 1-12. https://doi.org/10.1038/s41598-017-17765-5
- W. Cao et al., "Brits: Bidirectional recurrent imputation for time series," arXiv preprint, CoRR, 2018, arXiv:1805.10572
- Y.F. Zhang et al., "SSIM-A deep learning approach for recovering missing time series sensor data," IEEE Internet Things J., vol. 6, no. 4, 2019, pp. 6618-6628. https://doi.org/10.1109/jiot.2019.2909038
- Y. Rubanova et al., "Latent odes for irregularly-sampled time series," arXiv preprint, CoRR, 2019, arXiv:1907.03907
- J. Ma et al., "CDSA: Cross-dimensional self-attention for multivariate, geo-tagged time series imputation," arXiv preprint, CoRR, 2019, arXiv:1905.09904
- J. Yoon et al., "Gain: Missing data imputation using generative adversarial nets," in Proc. Int. Conf. Mach. Learn. (PMLR), Stockholm, Sweden, July 2018, pp. 5689-5698.
- Y. Luo et al., "Multivariate time series imputation with generative adversarial networks," in Proc. Int. Conf. Neural Inf. Process. Syst., 2018, pp. 1603-1614.
- Y. Luo et al., "E2gan: End-to-end generative adversarial network for multivariate time series imputation," AAAI Press, 2019, pp. 3094-3100.
- Y. Liu et al., "Naomi: Non-autoregressive multiresolution sequence imputation," arXiv preprint, CoRR, 2019, arXiv:1901.10946
- M. Gupta et al., "Time-series imputation and prediction with bi-directional generative adversarial networks," arXiv preprint, CoRR, 2020, arXiv:2009.08900
- https://paperswithcode.com/task/multivariate-time-seriesimputation