DOI QR코드

DOI QR Code

LNOI 포토닉스의 기술 동향

LNOI Photonics Technology Trends

  • 발행 : 2021.06.01

초록

Recently, LNOI photonics technology has attracted attention as a photonics platform capable of integrating ultra-high-speed, low power consumption, and high nonlinearity optical devices, as it is possible to manufacture LiNbO3 optical waveguides with ultra-low optical loss and a radius of curvature of several tens of micrometers. Here, we will briefly compare various photonics platforms, such as Si, InP, SiN, and LNOI, describe the current research trends of LNOI photonics, and discuss the direction of photonics technology at the conclusion.

키워드

과제정보

이 연구는 MSIT/IITP의 ICT R&D 프로그램[2020-0-01268, 2019-0-00008]의 일환으로 수행되었음.

참고문헌

  1. Wikipedia, https://ko.wikipedia.org/wiki/%EC%A0%95%EB%B3%B4
  2. S.J.B. Yoo et al., "Heterogeneous 2D/3D photonic integrated microsystems," Microsyst. Nanoeng., vol. 2, 2016, Article no. 16030.
  3. G. Gui et al., "6G: Opening new horizons for integration of comfort, security, and intelligence," IEEE Wirel. Commun., vol. 27, no. 5, 2020, pp. 126-132. https://doi.org/10.1109/mwc.001.1900516
  4. X. Ren et al., "6G: Network visions and requirements for next generation optical networks," in Proc. Int. Conf. Opt. Instrum. Technol., vol. 11435, Beijing, China, Mar. 2020, p. 2114350H.
  5. M.W. Akhtar et al., "The shift to 6G communications: Vision and requirements," Hum. Cent. Comput. Inf. Sci., vol. 10, 2020, Article no. 53.
  6. M. Smit et al, "Past, present, and future of InP-based photonic integration," APL Photonics, vol. 4, 2019, Article no. 050901.
  7. D.J. Blumenthal et al., "Silicon nitride in silicon photonics," Proc. IEEE, vol. 106, no. 12, 2018, pp. 2209-2231. https://doi.org/10.1109/JPROC.2018.2861576
  8. R. Soref, "The past, present, and future of silicon photonics," IEEE J. Sel. Top. Quantum Electron.,vol. 12, no. 6, 2006, pp. 1678-1687. https://doi.org/10.1109/JSTQE.2006.883151
  9. J. Lin et al., "Advances in on-chip photonic devices based on lithium niobate on insulator," Photon. Res. vol. 8, 2020, pp. 1910-1936. https://doi.org/10.1364/PRJ.395305
  10. http://www.earlyadopter.co.kr/12496
  11. N.C. Abrams et al., "Silicon photonic 2.5D multi-chip module transceiver for high-performance data centers," J. Light. Technol., vol. 38, no. 13, 2020, pp. 33467-3357.
  12. N.C. Abrams, "Development of silicon photonic multi chip module transceivers," Ph. D. thesis, Columbia university, NY, USA, 2020.
  13. D. Buca et al., "GeSn lasers for CMOS integration," in Proc. IEEE Int. Electron Devices Meeting (IEDM), San Francisco, CA, USA, Dec. 2016, pp. 22.3.1-22.3.4.
  14. J. Margetis et al., "GeSn-based light sources and photoconductors towards integrated photonics for the mid-infrared," in Proc. IEEE Photonics Society Summer Topical Meeting Series (SUM), San Juan, PR, USA, July 2017, pp. 13-14.
  15. H. Ito et al., "High-speed and high-output InP-InGaAs unitraveling-carrier photodiodes," IEEE J. Sel. Top. Quantum Electron., vol. 10, no. 4, 2004, pp. 709-727. https://doi.org/10.1109/JSTQE.2004.833883
  16. https://www.infinera.com/wp-content/uploads/The-Advantages-of-InP-Photonic-Integration-in-High-Performance-Coherent-Optics-0223-WP-RevB-0121.pdf
  17. G. Poberaj et al., "Lithium niobate on insulator (LNOI) for micro-photonic devices," Laser Photonics Rev., vol. 6, no. 4, 2012, pp. 488-503. https://doi.org/10.1002/lpor.201100035
  18. Y. Sakashita et al., "Preparation and characterization of LiNbO3 thin films produced by chemical-vapor deposition," J. Appl. Phys., vol. 77, no. 11, 1995, pp. 5995-5999. https://doi.org/10.1063/1.359183
  19. X. Lansiaux et al., "LiNbO3 thick films grown on sapphire by using a multistep sputtering process," J. Appl. Phys., vol. 90, no. 10, 2001, pp. 5274-5277. https://doi.org/10.1063/1.1378332
  20. Y. Nakata et al., "Fabrication of LiNbO3 thin films by pulsed laser deposition and investigation of nonlinear properties," Appl. Phys. A: Mater. Sci. Process., vol. 79, no. 4-6, 2004, pp. 1279-1282. https://doi.org/10.1007/s00339-004-2748-1
  21. J. Yoon et al., "Growth of highly textured LiNbO3 thin film on Si with MgO buffer layer through the sol-gel process," Appl. Phys. Lett., vol. 68, no. 18, 1996, pp. 2523-2525. https://doi.org/10.1063/1.115842
  22. F. Gitmans et al., "Growth of tantalum oxide and lithium tantalate thin films by molecular beam epitaxy," Vacuum, vol. 46, no. 8, 1995, pp. 939-942. https://doi.org/10.1016/0042-207X(95)00077-1
  23. D. Zhu et al., "Integrated photonics on thin-film lithium niobate," 2021, arXiv: 2102.11956, 2021. https://doi.org/10.1364/AOP.411024
  24. K. Worhoff et al., "TriPleX: A versatile dielectric photonic platform," Adv. Opt. Technol., vol. 4, no. 2, 2015, pp. 189-207.
  25. M. Prost et al., "A compact thin-film lithium niobate platform with arrayed waveguide gratings and MMIs," in Proc. OFC, San Diego, CA, USA, Mar. 2018, pp. 1-3.
  26. C. Wang et al., "Nanophotonic lithium niobate electro-optic modulators," Opt. Express, vol. 26, no. 2, 2018, pp. 1547-1555. https://doi.org/10.1364/OE.26.001547
  27. C. Wang et al., "Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages," Nature, vol. 562, 2018, pp. 101-104. https://doi.org/10.1038/s41586-018-0551-y
  28. K. Luke et al., "Wafer-scale low-loss lithium niobate photonic integrated circuits," Opt. Express, vol. 28, no. 17, 2020, pp. 24452-24458. https://doi.org/10.1364/OE.401959
  29. M. Zhang et al., "Monolithic ultra-high-Q lithium niobate microring resonator," Optica, vol. 4, no. 12, 2017, pp. 1536-1537. https://doi.org/10.1364/OPTICA.4.001536
  30. B. Desiatov et al., "Ultra-low-loss integrated visible photonics using thin-film lithium niobate," Optica, vol. 6, no. 3, 2019, pp. 380-384. https://doi.org/10.1364/optica.6.000380
  31. V. Dobrusin et al., "Fabrication method of low-loss large single mode ridge Ti:LiNbO3 waveguides," Opt. Mater., vol. 29, no. 12, 2007, pp. 1630-1634. https://doi.org/10.1016/j.optmat.2006.08.011
  32. M. Li et al., "Silicon intensity Mach-Zehnder modulator for single lane 100Gb/s applications," Photonics Res., vol. 6, no. 2, 2018, pp. 109-116. https://doi.org/10.1364/PRJ.6.000109
  33. G.T. Reed et al., "Silicon optical modulators," Nature Photonics, vol. 4, no. 8, 2010 pp. 518-526. https://doi.org/10.1038/nphoton.2010.179
  34. J. Ozaki et al., "High-speed modulator for next-generation large-capacity coherent optical networks," NTT Tech. Rev., vol. 16, no. 4, 2018, pp. 1-8.
  35. S. Lange et al., "100 GBd intensity modulation and direct detection with an InP-based monolithic DFB laser Mach-Zehnder modulator," J. Light. Technol., vol. 36, no. 1, 2018, pp. 97-102. https://doi.org/10.1109/jlt.2017.2743211
  36. Y. Ogiso et al., "[011] waveguide stripe direction n-i-p-n heterostructure InP optical modulator," Electron. Lett., vol. 50, no. 9, 2014, pp. 688-690. https://doi.org/10.1049/el.2014.0430
  37. D. Sun et al., "Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications," Light: Sci. Appl., vol. 9, 2020, Article no. 197.
  38. J. Lin et al., "Advances in on-chip photonic devices based on lithium niobate on insulator," Photon. Res., vol. 8, no. 12, 2020, pp. 1910-1936. https://doi.org/10.1364/PRJ.395305
  39. Y. Qi et al., "Integrated lithium niobate photonics," Nano photonics, vol. 9, no. 6, 2020, pp. 1287-1320.
  40. C. Wang et al., "Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation," Nat. Commun., vol. 10, 2019, Article no. 978.
  41. G. Schreiber et al., "Nonlinear integrated optical frequency converters with periodically poled Ti:LiNbO3 waveguides," in Proc. Symp. Integr. Opt., vol. 4277, San Jose, CA, USA, May 2001.
  42. R. Brinkmann et al., "Erbium-doped single- and double-pass Ti:LiNbO3 waveguide amplifiers," IEEE J Quantum Electron., vol. 30, no. 10, 1994, pp. 2356-2360. https://doi.org/10.1109/3.328589
  43. C. Huang et al., "980-nm-pumped Er-doped LiNbO3 waveguide amplifiers: A comparison with 1484-nm pumping," IEEE J. Sel. Top. Quantum Electron., vol. 2, no. 2, 1996, pp. 367-372. https://doi.org/10.1109/2944.577396
  44. D.L. Veasey et al., "Time-dependent modeling of erbium-doped waveguide lasers in lithium niobate pumped at 980 and 1480 nm," IEEE J. Quantum Electron., vol. 33, no. 10, 1997, pp. 1647-1662. https://doi.org/10.1109/3.631259
  45. W. Sohler et al., "Erbium-doped lthium niobate waveguide lasers," IEICE Trans. Electron., vol. E88-C, 2005, pp. 990-997. https://doi.org/10.1093/ietele/e88-c.5.990
  46. M. Fleuster et al., "Optical and structural properties of MeV erbium-implanted LiNbO3," J. Appl. Phys., vol. 75, 1994, Article no. 173.
  47. A. Boes et al., "Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits," Laser Photonics Rev., vol. 12, no. 4, 2018, Article no. 1700256.
  48. W.K. Chan et al., "Optical coupling of GaAs photodetectors integrated with lithium niobate waveguides," IEEE Photon. Technol. Lett., vol. 2, no. 3, 1990, pp. 194-196. https://doi.org/10.1109/68.50887
  49. A. Yi-Yan et al., "Grafted GaAs detectors on lithium niobate and glass optical waveguides," IEEE Photon. Technol. Lett., vol. 1, no. 11, 1989, pp. 379-380. https://doi.org/10.1109/68.43385
  50. W.K. Chan et al., "GaAs photodetectors integrated with lithium niobate waveguides," IEEE Trans. Electron Devices, vol. 36, no. 11, 1989, pp. 2627-2628.
  51. M.G. Tanner et al., "A superconducting nanowire single photon detector on lithium niobate," Nanotechnol., vol. 23, 2012, Article no. 505201.
  52. J.P. Hopker et al., "Towards integrated superconducting detectors on lithium niobate waveguides," in Proc. SPIE Nanosci. Eng., vol. 10358, San Diego, CA, USA, Aug. 2017, Article no. 1035809.
  53. B. Desiatov et al., "Silicon photodetector for integrated lithium niobate photonics," Appl. Phys. Lett., vol. 115, 2019, Article no. 121108.
  54. M. He et al., "High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s-1 and beyond," Nat. Photon., vol. 13, 2019, pp. 359-364. https://doi.org/10.1038/s41566-019-0378-6
  55. S. Tanzilli et al., "PPLN waveguide for quantum communication," Eur. Phys. J. D., vol. 18, 2002, pp. 155-160.
  56. G. Fujii et al., "Bright narrowband source of photon pairs at optical telecommunication wavelengths using a type-II periodically poled lithium niobate waveguide," Opt. Express, vol. 15, 2007, pp. 12769-12776. https://doi.org/10.1364/OE.15.012769
  57. H. Jin et al., "On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits," Phys. Rev. Lett., vol. 113, 2014, Article no. 103601.
  58. J.P. Hopker et al., "Integrated transition edge sensors on titanium in-diffused lithium niobate waveguides," APL Photon., vol. 4, 2019, Article no. 056103.
  59. K.-H. Luo et al., "Nonlinear integrated quantum electro-optic circuits," Sci. Adv., vol. 5, no. 1, 2019, Article no. eaat1451.
  60. M. Zhang et al., "Electronically programmable photonic molecule," Nat. Photon., vol. 13, 2019, pp. 36-40. https://doi.org/10.1038/s41566-018-0317-y
  61. A. Rao et al., "Compact lithium niobate electrooptic modulators," IEEE J. Sel. Top. Quantum Electron., vol. 24, no. 4, 2018, pp. 1-14.
  62. T. J. Kippenberg, et al., "Dissipative Kerr solitons in optical microresonators," Sci., vol. 361, no. 6402, 2018, Article no. eaan8083.
  63. X. Xue et al., "Programmable single-bandpass photonic RF filter based on Kerr comb from a microring," J. Light. Technol., vol. 32, no. 20, 2014, pp. 3557-3565. https://doi.org/10.1109/JLT.2014.2312359
  64. N. Kuse et al., "Frequency-modulated comb LIDAR," APL Photon., vol. 4, 2019, Article no. 106105.