Acknowledgement
이 논문은 2021년도 정부(과학기술정보통신부)의 재원으로 정보통신기획평가원의 지원을 받아 수행된 연구임[2019-0-00003, 결함 허용 양자컴퓨팅 시스템 프로그래밍, 구동, 검증 및 구현을 위한 요소기술 개발].
References
- R.P. Feynman, "Simulating physics with computers," Int. J. Theor. Phys., vol. 21, no. 6-7, June 1982, pp. 467-488. https://doi.org/10.1007/BF02650179
- P.W. Shor, "Algorithms for quantum computation: Discrete logarithms and factoring," in Proc. Annu. Symp. Found. Comput. Sci., Santa Fe, NM, USA, Nov. 1994, pp. 124-134.
- L.K. Grover, "A fast quantum mechanical algorithm for database search," in Proc. Annu. ACM Symp. Theory Comput., Philadelphia, PA, USA, May 22-24 1996, pp. 212-219.
- K.M. Svore et al., "The quantum future of computation," Comput., vol. 49, no. 9, Sept. 2016, pp. 21-30. https://doi.org/10.1109/MC.2016.293
- https://www.hpcwire.com/2019/01/10/ibm-quantum-update-q-system-one-launch-new-collaborators-and-qccenter-plans/
- F. Arute et al., "Quantum supremacy using a programmable superconducting processor," Nature, vol. 574, 2019, pp. 505-510. https://doi.org/10.1038/s41586-019-1666-5
- US Congress, "H.R.6227-National quantum initiative act," 2018.
- 한중과학기술협력센터, "중국의 양자컴퓨팅 R&D 정책 동향," KOSTEC Issue Report, vol. 4, 2019. 4.
- EU Digital Single Market, "EU funded projects on quantum technology," https://ec.europa.eu/
- Japan S&T Agency, "光.量子飛躍フラッグシッププログラム (Q-LEAP)," 2019.
- A.G. Fowler et al., "Surface codes: Towards practical largescale quantum computation," Phys. Rev. A, vol. 86, 2012, Article no. 032324.
- C. Gidney and M. Eker, "How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits," 2019, arXiv: 1905.09749.
- 백충헌, 최병수, "양자점 큐비트 기반 양자컴퓨팅의 국외 연구 동향 분석," 전자통신동향분석 제35권 제2호, 2020. 4.
- J.C. Bardin et al., "Microwaves in quantum computing," IEEE J. Microw., vol. 1, no. 1, 2021, pp. 403-427. https://doi.org/10.1109/JMW.2020.3034071
- National Academies of Sciences, Engineering, and Medicine, Quantum Computing: Progress and Prospects, The National Academies Press, Washington, DC, USA, 2018.
- G. Batey et al., "A new ultra-low-temperature cryogen-free experimental platform," J. Phys.: Conf. Ser. vol. 568, 2014, Article no. 032014.
- A. Beckers, F. Jazaeri, and C. Enz, "Characterization and modeling of 28-nm bulk CMOS technology down to 4.2 K," IEEE J. Electron Devices Soc., vol. 6, 2018, pp. 1007-1018. https://doi.org/10.1109/JEDS.2018.2817458
- A.H. Coskun and J.C. Bardin, "Cryogenic small-signal and noise performance of 32nm SOI CMOS," IEEE MTT-S Int. Microw. Symp. Dig., June. 2014, pp. 1-4.
- S. Weinreb, J.C. Bardin, and H. Mani, "Design of cryogenic sige low noise amplifiers," IEEE Trans. Microw. Theory Tech., vol. 55, no. 11, Nov. 2007, pp. 2306-2312. https://doi.org/10.1109/TMTT.2007.907729
- J.D. Cressler, "Silicon-germanium as an enabling technology for extreme environment electronics," IEEE Trans. Device Mater. Reliab., vol. 10, no. 4, Dec. 2010, pp. 437-448. https://doi.org/10.1109/TDMR.2010.2050691
- R.M. Incandela et al., "Characterization and compact modeling of nanometer CMOS transistors at deep-cryogenic temperatures," IEEE J. Electron Devices Soc., vol. 6, 2018, pp. 996-1006. https://doi.org/10.1109/JEDS.2018.2821763
- J.C. Bardin et al., "29.1 A 28nm bulk-CMOS 4-to-8GHz i2mW cryogenic pulse modulator for scalable quantum computing," in Proc. IEEE Int. Solid- State Circuits Conf. (ISSCC), San Francisco, CA, USA, Feb. 2019, pp. 456-458.
- B. Patra et al., "19.1 A scalable cryo-CMOS 2-to-20GHz digitally intensive controller for 4×32 frequency multiplexed spin qubits/transmons in 22nm FinFET technology for quantum computers," in Proc. IEEE Int. Solid- State Circuits Conf. (ISSCC), San Francisco, CA, USA, Feb. 2020, pp. 304-306.
- S.J. Pauka et al., "A cryogenic CMOS chip for generating control signals for multiple qubits." Nat. Electron., vol. 4, 2021, pp. 64-70. https://doi.org/10.1038/s41928-020-00528-y
- M. Mehrpoo et al., "Benefits and challenges of designing cryogenic CMOS RF circuits for quantum computers," in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Sapporo, Japan, May 2019, pp. 1-5.