과제정보
This work was supported by Manipal Academy of Higher Education Dr. T.M.A Pai Research Scholarship under Research Registration No. 170900117.
참고문헌
- W. Zhang et al., Text clustering using frequent itemsets, Knowl-Based Syst. 23 (2010), no. 5, 379-388. https://doi.org/10.1016/j.knosys.2010.01.011
- S. Naulaerts, et al., A primer to frequent itemset mining for bioinformatics, Brief Bioinform. 16 (2015), 216-231. https://doi.org/10.1093/bib/bbt074
- R. Harpaz, H. S. Chase, and C. Friedman, Mining multi-item drug adverse effect associations in spontaneous reporting systems, BMC Bioinform. 11 (2010), no. 9, S7.
- J. Han et al., Frequent pattern mining: Current status and future directions, Data Min. Knowl. Disc. 15 (2007), no. 1, 55-86. https://doi.org/10.1007/s10618-006-0059-1
- H. Yao, H. J. Hamilton, and C. J. Butz, A foundational approach to mining itemset utilities from databases, in Proc. SIAM Int. Conf. Data Min. (Lake Buena Vista, FL, USA), Apr. 2004, pp. 482-486.
- H. Yao and H. J. Hamilton. Mining itemset utilities from transaction databases, Data Knowl. Eng. 59 (2006), no. 3, 603-626. https://doi.org/10.1016/j.datak.2005.10.004
- Y. Liu and W.-K. Liao, A fast high utility itemsets mining algorithm, in Proc. Int. Workshop Utility-Based Data Min. (New York, NY, USA), Aug. 2005, pp. 90-99.
- Y. Liu, W.-K. Liao, and A. Choudhary, A two-phase algorithm for fast discovery of high utility itemsets, in Advances in Knowledge Discovery and Data Mining, Springer, Berlin, Heidelberg, Germany, 2005, pp. 689-695.
- Y. Liu et al., High utility itemsets mining, Int. J. Inf. Tech. Decis. Making 9 (2010), no. 6, 905-934. https://doi.org/10.1142/S0219622010004159
- R. Agrawal and R. Srikant, Fast algorithms for mining association rules, in Proc. Int. Conf. Very Large Data Bases (Santiago, Chile), Sept. 1994, 487-499.
- C. W. Lin, T. P. Hong, and W. H. Lu, An effective tree structure for mining high utility itemsets, Expert Syst. Appl. 38 (2011), no. 6, 7419-7424. https://doi.org/10.1016/j.eswa.2010.12.082
- C. F. Ahmed et al., HUC-Prune: An efficient candidate pruning technique to mine high utility patterns, Appl. Intell. 34 (2011), no. 2, 181-198. https://doi.org/10.1007/s10489-009-0188-5
- C. F. Ahmed et al., Efficient tree structures for high utility pattern mining in incremental databases, IEEE Trans. Knowl. Data Eng. 21 (2009), no. 12, 1708-1721. https://doi.org/10.1109/TKDE.2009.46
- V. S. Tseng et al., UP-Growth: An efficient algorithm for high utility itemset mining, Discov. Data Min. (New York, NY, USA), July (2010), 253-262.
- V. S. Tseng et al., Efficient algorithms for mining high utility itemsets from transactional databases, IEEE Trans. Knowl. Data Eng. 28 (2016), no 1, 54-67. https://doi.org/10.1109/TKDE.2015.2458860
- J. Han et al., Mining frequent patterns without candidate generation: A frequent-pattern tree approach, Data Min. Knowl. Disc. 8 (2004), no. 1, 53-87. https://doi.org/10.1023/B:DAMI.0000005258.31418.83
- M Liu and J Qu, Mining high utility itemsets without candidate generation, in Proc. ACM Int. Conf. Inform. Knowl. Manag. (New York, NY, USA), Oct. 2012, pp. 55-64.
- S. Krishnamoorthy, Pruning strategies for mining high utility itemsets, Expert Syst. Appl. 42 (2015), no. 5, 2371-2381. https://doi.org/10.1016/j.eswa.2014.11.001
- P. Fournier-Viger et al., Fhm: Faster high-utility itemset mining using estimated utility co-occurrence pruning, in International Symposium on Methodologies for Intelligent Systems, Springer, Berlin, Heidelberg, Germany, 2014, pp. 83-92.
- C. Zhang et al., An empirical evaluation of high utility itemset mining algorithms, Expert Syst. Appl. 101 (2018), 91-115. https://doi.org/10.1016/j.eswa.2018.02.008
- S. Zida et al., Efim: A fast and memory efficient algorithm for high-utility itemset mining, Knowl. Inf. Syst. 51 (2017), no. 2, 595-625. https://doi.org/10.1007/s10115-016-0986-0
- J. Liu, K. E. Wang, and B. C. M. Fung, Direct discovery of high utility itemsets without candidate generation, in Proc. IEEE Int. Conf. Data Min. (Brussels, Belgium), Dec. 2012, pp. 984-989.
- J. Liu, K. Wang, and B. C. M. Fung, Mining high utility patterns in one phase without generating candidates, IEEE Trans. Knowl. Data Eng. 28 (2016), no. 5, 1245-1257. https://doi.org/10.1109/TKDE.2015.2510012
- S. Dawar, D. Bera, and V. Goyal, High-utility itemset mining for subadditive monotone utility functions, arXiv preprint, CoRR, 2018, arXiv:1812.07208.
- V. S. Ananthanarayana, D. K. Subramanian, and M. N. Murty, Scalable, distributed and dynamic mining of association rules, in High Performance Computing-HiPC 2000, vol. 1970, Springer, Berlin, Heidelberg, Germany, 2000, pp. 559-566.
- M. Geetha and R. J. D'souza, An efficient reduced pattern count tree method for discovering most accurate set of frequent itemsets, Int. J. Comp. Sci. Netw. Sec. 8 (2008), no. 8, 121-126.
- P. Fournier-Viger, SPMF An Open-Source Data Mining Library, Developer's Guide, 2020, available at https://www.philippe-fournier-viger.com/spmf/index.php?link=developers.php
- P. Fournier-Viger, SPMF An Open-Source Data Mining Library, Datasets, 2020. available at https://www.philippe-fournier-viger.com/spmf/index.php?link=datasets.php