References
- 통계청, "생명표, 국가승인통계 제101035호," 2017.
- Wikipedia, "E-textiles," https://en.wikipedia.org/wiki/E-textiles
- Wikipedia, "Transhumanism," https://en.wikipedia.org/wiki/Transhumanism
- 박소영, "인공지능 시대 인간의 신체와 문학적 형상화-사이보그, 트랜스휴먼, 포스트휴먼 그리고 뉴로맨서," 제41권 제4호, 2019, pp. 1157-1190.
- 이동우 외, "착용형 근력증강 기술 동향," 전자통신동향분석, 제32권 제4호, 2017, pp. 21-30. https://doi.org/10.22648/ETRI.2017.J.320403
- F.A. Panizzolo et al., "A biologically-inspired multi-joint soft exosuit that can reduce the energy cost of loaded walking," J. Neuroeng. Rehabilitation, vol. 13, 2016, pp. 1-14. https://doi.org/10.1186/s12984-015-0109-2
- L.N. Awad et al., "A soft robotic exosuit improves walking in patients after stroke," Sci. Translational Medicine, vol. 9, no. 400, 2017, doi: 10.1126/scirobotics.aah4416.
- B.T. Quinlivan et al., "Assistance magnitude versus metabolic cost reductions for a tethered multiarticular soft exosuit," Sci. Robotics, vol. 2, no. 2, 2017, doi: 10.1126/scirobotics.aah4416
- J. Kim et al., "Reducing the metabolic rate of walking and running with a versatile, portable exosuit." Sci., vol. 365, no. 6454, 2019, pp. 668-672. https://doi.org/10.1126/science.aav7536
- L.N. Awad et al., "The ReWalk ReStore™ soft robotic exosuit: a multi-site clinical trial of the safety, reliability, and feasibility of exosuit-augmented post-stroke gait rehabilitation." J. Neuroeng. Rehabilitation, vol. 17, 2020, pp. 1-11. https://doi.org/10.1186/s12984-019-0634-5
- https://www.sigmedics.com/
- https://www.hankyung.com/it/article/202007239901Y
- 신형철 외, "신체 기능의 이상이나 저하를 극복하기 위한 휴먼청각 및 근력 증강 원천 기술 개발," 한국전자통신연구원 3연차 보고서, 2019. 11.
- https://www.hexoskin.com/
- https://www.catapultsports.com/
- https://www.helite.com/
- https://www.tangobelt.com/
- https://www.wolkairbag.com/
- https://www.hip-hope.com/
- S. Hong et al., "Wearable thermoelectrics for personalized thermoregulation," Sci. Advances, vol. 5, no. 5, 2019, doi: 10.1126/sciadv.aaw0536.
- R.S. Johannson and A.B. Vallbo, "Tactile sensibility in the human hand: receptive field and absolute densities of four types of mechanoreceptive units in glabrous skin area," J. Physiol, vol. 281, 1978, pp. 101-123. https://doi.org/10.1113/jphysiol.1978.sp012411
- A. Chortos et al., "Pursuing prosthetic electronic skin," Nature Mater, vol. 15, 2016, doi: 10.1038/nmat4671.
- I. You et al., "E-skin tactile sensor matrix pixelated by position-registered conductive microparticles creating pressure-sensitive selectors," Adv. Func. Mater., 2018, 28, 1801858.
- N. Bai et al., "Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity," Nature Commun., vol. 11, 2020, doi: 10.1038/s41467-019-14054-9.
- S. Chun et al., "Self-Powered Pressure- and Vibration-Sensitive Tactile Sensors for Learning Technique-Based Neural Finger Skin," Nano Lett., vol. 19, no. 5, 2019, pp. 3305-3312. https://doi.org/10.1021/acs.nanolett.9b00922
- Q. Hua et al., "Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing." Nature Commun., vol. 9, no. 1, 2018, pp. 1-11. https://doi.org/10.1038/s41467-017-02088-w
- S. Lee et al., "Nanomesh pressure sensor for monitoring finger manipulation without sensory interference," Sci., vol. 370, no. 6519, pp. 966-970. https://doi.org/10.1126/science.abc9735
- F. Ershad et al., "Ultra-conformal drawn-on-skin electronics for multifunctional motion artifact-free sensing and point-of-care treatment," Nature Commun., vol. 11, July. 2020, doi: 10.1038/s41467-020-17619-1
- M. Ding et al., "Control of Walking Assist Exoskeleton With Time-delay Based on the Prediction of Plantar Force," IEEE Access, vol. 8, 2020, pp. 138642-138651. https://doi.org/10.1109/access.2020.3010644
- I. Kang et al., "Electromyography (EMG) signal contributions in speed and slope estimation using robotic exoskeletons," in Proc. IEEE Int. Conf. Rehabilitation Robot. (Roeonro, Canada), June 2019, doi: 10.1109/ICORR.2019.8779433.
- D. Molinaro et al., "Biological Hip Torque Estimation using a Robotic Hip Exoskeleton," in Proc. IEEE RAS/EMBS Int. Conf. Biomed. Roboti. Biomechatronics (New York, USA), 2020, doi: 10.1109/BioRob49111.2020.9224334.
- X.B. Peng et al., "Learning Agile Robotic Locomotion Skills by Imitating Animals," arXiv preprint, 2020, arXiv:2004.00784.
- H. Tan et al., "Tactile sensory coding and learning with bio-inspired optoelectronic spiking afferent nerves," Nature Commun., vol. 11, 2020, doi: 10.1038/s41467-020-15105-2
- S. Sundaram et al., "Learning the signatures of the human grasp using a scalable tactile glove," Nature, vol. 569, no. 7758, 2019, pp. 698-702. https://doi.org/10.1038/s41586-019-1234-z