DOI QR코드

DOI QR Code

Correlation between total air pollutant emissions and incidence of type 1 diabetes in the Russian Federation

  • Choi, Hoon Sung (Department of Internal Medicine, Kangwon National University School of Medicine) ;
  • Kim, Jin Taek (Department of Internal Medicine, Eulji General Hospital, Eulji University School of Medicine) ;
  • Seo, Ji-Young (Department of Pediatrics, Eulji General Hospital, Eulji University School of Medicine) ;
  • Linkov, Faina (Department of Health Administration and Public Health, Rangos School of Health Sciences, Duquesne University) ;
  • Shubnikov, Evgeniy (Center for Endocrinology "SibDiab") ;
  • Lee, Hong Kyu (Department of Internal Medicine, Eulji General Hospital, Eulji University School of Medicine)
  • Received : 2020.09.03
  • Accepted : 2020.12.31
  • Published : 2021.10.15

Abstract

Background: Exposure to air pollution (gaseous pollutants and/or particulate matter) has been associated with the incidence, prevalence, and mortality of type 1 diabetes (T1D). Purpose: To examine the quantitative relationship between air pollutant emissions and the incidence of T1D. Methods: We examined the association between the incidence of T1D and type 2 diabetes (T2D) in 2017 as well as that of T1D in patients younger than 15 years in 2016 with "emissions of air-polluting substances from stationary and mobile sources by regions of the Russian Federation in 2016" as reported by the Federal Diabetes Register of Russia downloaded from the Russian government website (http://www.mnr.gov.ru/docs/gosudarstvennye_doklady/o_sostoyanii_i_ob_okhrane_okruzhayushchey_sredy_rossiyskoy_federatsii/). Results: The incidence of T1D across all ages in each region of the Russian Federation correlated with the total air pollutants emitted in the region each year (r=0.278, P=0.013). The incidence of T2D was also correlated with the amount of air pollutants (r=0.234, P=0.037) and the incidence of T1D (r=0.600, P<0.001) in each country. Similarly, the incidence of T1D in patients younger than 15 years correlated with the total air pollutants emitted each year in each region (r=0.300, P=0.011). Conclusion: The quantitative relationship between the total air pollutants emitted and the incidence of T1D and T2D in the Russian Federation suggests that air pollution contributes to the development of T1D and T2D.

Keywords

References

  1. Pociot F, Lernmark A. Genetic risk factors for type 1 diabetes. Lancet 2016;387:2331-9. https://doi.org/10.1016/S0140-6736(16)30582-7
  2. Bodin J, Stene LC, Nygaard UC. Can exposure to environmental chemicals increase the risk of diabetes type 1 development? Biomed Res Int 2015;2015:208947. https://doi.org/10.1155/2015/208947
  3. Butalia S, Kaplan GG, Khokhar B, Rabi DM. Environmental risk factors and type 1 diabetes: past, present, and future. Can J Diabetes 2016;40:586-93. https://doi.org/10.1016/j.jcjd.2016.05.002
  4. Tuomilehto J. The emerging global epidemic of type 1 diabetes. Curr Diab Rep 2013;13:795-804. https://doi.org/10.1007/s11892-013-0433-5
  5. Khawandanah J. Double or hybrid diabetes: a systematic review on disease prevalence, characteristics and risk factors. Nutr Diabetes 2019;9:33. https://doi.org/10.1038/s41387-019-0101-1
  6. Patterson C, Guariguata L, Dahlquist G, Soltesz G, Ogle G, Silink M. Diabetes in the young - a global view and worldwide estimates of numbers of children with type 1 diabetes. Diabetes Res Clin Pract 2014;103:16175.
  7. Songini M, Lombardo C. The Sardinian way to type 1 diabetes. J Diabetes Sci Technol 2010;4:1248-55. https://doi.org/10.1177/193229681000400526
  8. Borchers AT, Uibo R, Gershwin ME. The geoepidemiology of type 1 diabetes. Autoimmun Rev 2010;9:A355-65.
  9. Shaltout AA, Wake D, Thanaraj TA, Omar DM, Al-AbdulRazzaq D, Channanath A, et al. Incidence of type 1 diabetes has doubled in Kuwaiti children 0-14 years over the last 20 years. Pediatr Diabetes 2017;18:7616.
  10. Robert AA, Al-Dawish A, Mujammami M, Dawish MAA. Type 1 diabetes mellitus in Saudi Arabia: a soaring epidemic. Int J Pediatr 2018;2018:9408370. https://doi.org/10.1155/2018/9408370
  11. Dedov II, Shestakova MV, Peterkova VA, Vikulova OK, Zheleznyakova AV, Isakov MA, et al. Diabetes mellitus in children and adolescents according to the Federal diabetes registry in the Russian Federation: dynamics of major epidemiological characteristics for 2013-2016. Diabetes Mellit 2018;20:392-402. https://doi.org/10.14341/dm9460
  12. Hathout EH, Beeson WL, Ischander M, Rao R, Mace JW. Air pollution and type 1 diabetes in children. Pediatr Diabetes 2006;7:81-7. https://doi.org/10.1111/j.1399-543X.2006.00150.x
  13. Lao XQ, Guo C, Chang LY, Bo Y, Zhang Z, Chuang YC, et al. Long-term exposure to ambient fine particulate matter (PM2.5) and incident type 2 diabetes: a longitudinal cohort study. Diabetologia 2019;62:759-69. https://doi.org/10.1007/s00125-019-4825-1
  14. Liu F, Chen G, Huo W, Wang C, Liu S, Li N, et al. Associations between long-term exposure to ambient air pollution and risk of type 2 diabetes mellitus: a systematic review and meta-analysis. Environ Pollut 2019;252:1235-45. https://doi.org/10.1016/j.envpol.2019.06.033
  15. Di Ciaula A. Type I diabetes in paediatric age in Apulia (Italy): incidence and associations with outdoor air pollutants. Diabetes Res Clin Pract 2016;111:36-43. https://doi.org/10.1016/j.diabres.2015.10.016
  16. Beyerlein A, Krasmann M, Thiering E, Kusian D, Markevych I, D'Orlando O, et al. Ambient air pollution and early manifestation of type 1 diabetes. Epidemiology 2015;26:e31-2. https://doi.org/10.1097/EDE.0000000000000254
  17. Malmqvist E, Larsson HE, Jonsson I, Rignell-Hydbom A, Ivarsson SA, Tinnerberg H, et al. Maternal exposure to air pollution and type 1 diabetes--Accounting for genetic factors. Environ Res 2015;140:268-74. https://doi.org/10.1016/j.envres.2015.03.024
  18. Stamatouli AM, Quandt Z, Perdigoto AL, Clark PL, Kluger H, Weiss SA, et al. Collateral damage: insulin-dependent diabetes induced with checkpoint inhibitors. Diabetes 2018;67:1471-80. https://doi.org/10.2337/dbi18-0002
  19. Lockwood AH. Diabetes and air pollution. Diabetes Care 2002;25:1487-8. https://doi.org/10.2337/diacare.25.8.1487
  20. Hathout EH, Beeson WL, Nahab F, Rabadi A, Thomas W, Mace JW. Role of exposure to air pollutants in the development of type 1 diabetes before and after 5 yr of age. Pediatr Diabetes 2002;3:184-8. https://doi.org/10.1034/j.1399-5448.2002.30403.x
  21. Dedov II, Shestakova MV, Vikulova OK, Zheleznyakova AV, Isakov MA. Diabetes mellitus in Russian Federation: prevalence, morbidity, mortality, parameters of glycaemic control and structure of glucose lowering therapy according to the Federal Diabetes Register, status 2017. Diabetes Mellit 2018;21:144-59. https://doi.org/10.14341/dm9686
  22. American Diabetes A. Standards of medical care in diabetes--2009. Diabetes Care 2009;32 Suppl 1:S13-61. https://doi.org/10.2337/dc09-S013
  23. LaPorte RE, Tajima N, Akerblom HK, Berlin N, Brosseau J, Christy M, et al. Geographic differences in the risk of insulin-dependent diabetes mellitus: the importance of registries. Diabetes Care 1985;8 Suppl 1:1017.
  24. WHO multinational project for childhood diabetes. WHO Diamond Project Group. Diabetes Care 1990;13:1062-8. https://doi.org/10.2337/diacare.13.10.1062
  25. Vallero DA. Fundamentals of air pollution. Amsterdam: Academic Press, 2014.
  26. Elten M, Donelle J, Lima I, Burnett RT, Weichenthal S, Stieb DM, et al. Ambient air pollution and incidence of early-onset paediatric type 1 diabetes: a retrospective population-based cohort study. Environ Res 2020;184:109291. https://doi.org/10.1016/j.envres.2020.109291
  27. Skrodeniene E, Marciulionyte D, Padaiga Z, Jasinskiene E, Sadauskaite-Kuehne V, Ludvigsson J. Environmental risk factors in prediction of childhood prediabetes. Medicina (Kaunas) 2008;44:56-63. https://doi.org/10.3390/medicina44010009
  28. Patterson CC, Harjutsalo V, Rosenbauer J, Neu A, Cinek O, Skrivarhaug T, et al. Trends and cyclical variation in the incidence of childhood type 1 diabetes in 26 European centres in the 25 year period 1989-2013: a multicentre prospective registration study. Diabetologia 2019;62:408-17. https://doi.org/10.1007/s00125-018-4763-3
  29. Wang GZ, Zhang L, Zhao XC, Gao SH, Qu LW, Yu H, et al. The Aryl hydrocarbon receptor mediates tobacco-induced PD-L1 expression and is associated with response to immunotherapy. Nat Commun 2019;10:1125. https://doi.org/10.1038/s41467-019-08887-7
  30. Kawabata Y, Nishida N, Awata T, Kawasaki E, Imagawa A, Shimada A, et al. Genome-wide association study confirming a strong effect of HLA and identifying variants in CSAD/lnc-ITGB7-1 on chromosome 12q13. 13 associated with susceptibility to fulminant type 1 diabetes. Diabetes 2019;68:665-75. https://doi.org/10.2337/db18-0314
  31. Dimakakou E, Johnston HJ, Streftaris G, Cherrie JW. Exposure to environmental and occupational particulate air pollution as a potential contributor to neurodegeneration and diabetes: a systematic review of epidemiological research. Int J Environ Res Public Health 2018;15:1704. https://doi.org/10.3390/ijerph15081704
  32. Tuomi T, Santoro N, Caprio S, Cai M, Weng J, Groop L. The many faces of diabetes: a disease with increasing heterogeneity. Lancet 2014;383:1084-94. https://doi.org/10.1016/S0140-6736(13)62219-9
  33. Bowe B, Xie Y, Li T, Yan Y, Xian H, Al-Aly Z. The 2016 global and national burden of diabetes mellitus attributable to PM2.5 air pollution. Lancet Planet Health 2018;2:e301-12. https://doi.org/10.1016/s2542-5196(18)30140-2
  34. Jacob AM, Datta M, Kumpatla S, Selvaraj P, Viswanthan V. Prevalence of diabetes mellitus and exposure to suspended particulate matter. J Health Pollut 2019;9:190608. https://doi.org/10.5696/2156-9614-9.22.190608
  35. Gale E. Epidemiology of type 1 diabetes. Diapedia 2012;13:21042.

Cited by

  1. Ambient air pollution and pediatric diabetes vol.64, pp.10, 2021, https://doi.org/10.3345/cep.2021.00122