참고문헌
- Bandini, P., Salgado, R. and Loukidis, D. (2003), "Stability of seismically loaded slopes using limit analysis", Geotechnique, 53(5), 463-480. https://doi.org/10.1680/geot.2003.53.5.463.
- Berilgen, M.M. (2006), "Investigation of stability of slopes under drawdown conditions", Comput. Geotech., 34(2), 81-91. https://doi.org/10.1016/j.compgeo.2006.10.004.
- Carranza-Torres, C. and Fairhurst, C. (1999), "The elasto-plastic response of underground excavations in rock masses that satisfy the Hoek-Brown failure criterion", J. Rock Mech. Mining Sci., 36(6), 777-809. https://doi.org/10.1016/s0148-9062(99)00047-9.
- Chehade, H.A., Dias, D., Sadek, M., Jenck, O. and Chehade, F. H. (2019), "Seismic analysis of geosynthetic-reinforced retaining wall in cohesive soils", Geotextiles Geomembr., 47(3), 315-326. https://doi.org/10.1016/j.geotexmem.2019.02.003.
- Gaziev, E.G. (2001), "Stability analysis of the rock slope in the zimapan arch dam reservoir, Mexico", Bulletin Eng. Geology Environ., 60(2), 135-137. https://doi.org/10.1007/s100640000095.
- Hoek, E., Carranza-Torres, C. and Corkum, B. (2002) "Hoek-Brown failure criterion-2002 edition", Proceedings of the Fifth North American Rock Mechanics, Toronto, Canada, July.
- Huang, F. and Yang, X.L. (2010), "Upper bound solutions for the face stability of shallow circular tunnels subjected to nonlinear failure criterion", Geoshanghai International Conference, Shanghai, China, May.
- Karray, M., Hussien, M.N., Delisle, M.C. and Ledoux, C. (2018), "Framework to assess pseudo-static approach for seismic stability of clayey slopes", Canadian Geotech. J., 55(4), 1860-1876. https://doi.org/10.1139/cgj-2017-0383.
- Khorasani, E., Amini, M., Hossaini, M.F. and Medley, E. (2019), "Evaluating the effects of the inclinations of rock blocks on the stability of bimrock slopes", Geomech. Eng., 17(3), 281-287. https://doi.org/10.12989/gae.2019.17.3.281.
- Lane, P.A. and Griffiths, D.V. (2000). "Assessment of stability of slopes under drawdown conditions", J. Geotech. Geoenviron. Eng., 126(5), 443-450. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(443).
- Leshchinsky, B. and Ambauen, S. (2015), "Limit equilibrium and limit analysis: comparison of benchmark slope stability problems", J. Geotech. Geoenviron. Eng., 141(10). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001347.
- Li, A.J., Lyamin, A.V. and Merifield, R.S. (2008). "Seismic rock slope stability charts based on limit analysis methods", Comput. Geotech., 36(1-2), 135-148. https://doi.org/10.1016/j.compgeo.2008.01.004.
- Lu, C.P., Shu, L.C., Chen, X.H. and Cheng, C. (2011). "Parameter estimation for a karst aquifer with unknown thickness using the genetic algorithm method", Environ. Earth Sciences, 63(4), 797-807. https://doi.org/10.1007/s12665-010-0751-8.
- Lysandros, P., Elias, G. and Konstantinos-Paraskevas, G. (2020), "Stability assessment of soil slopes in three dimensions: The effect of the width of failure and of tension crack", Geomech. Eng., 22(4), 319-328. https://doi.org/10.12989/gae.2020.22.4.319.
- Merifield, R.S., Lyamin, A.V. and Sloan, S.W. (2006). "Limit analysis solutions for the bearing capacity of rock masses using the generalised hoek-brown criterion", J. Rock Mech. Mining Sci., 43(6), 920-937. https://doi.org/10.1016/j.ijrmms.2006.02.001.
- Mollon, G., Phoon, K.K., Dias, D. and Soubra, A.H. (2011), "Validation of a new 2D failure mechanism for the stability analysis of a pressurized tunnel face in a spatially varying sand", J. Eng. Mech., 137(1), 8-21. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000196.
- Nadukuru, S.S. and Michalowski, R.L. (2013). "Three-dimensional displacement analysis of slopes subjected to seismic loads", Canadian Geotech. J., 50(6), 650-661. https://doi.org/10.1139/cgj-2012-0223.
- Rutqvist, J., Stephansson, O. (2003). "The role of hydromechanical coupling in fractured rock engineering", Hydrogeology Journal, 11(1), 7-40. https://doi.org/10.1007/s10040-002-0241-5.
- Saada, Z., Maghous, S. and Garnier, D. (2012). "Stability analysis of rock slopes subjected to seepage forces using the modified hoek-brown criterion", J. Rock Mech. Mining Sci., 55, 45-54. https://doi.org/10.1016/j.ijrmms.2012.06.010.
- Sahoo, P.P. and Shukla, S.K. (2019), "Taylor's slope stability chart for combined effects of horizontal and vertical seismic coefficients", Geotechnique, 69(4), 344-354. https://doi.org/10.1680/jgeot.17.p.222.
- Sun, Z.B., Li, J.F., Pan, Q.J., Dias, D., Li, S.Q. and Hou, C.Q. (2018), "Discrete kinematic mechanism for nonhomogeneous slopes and its application", J. Geomech., 18(12), 04018171. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001303.
- Tiwari, G. and Latha, G.M. (2017), "Reliability analysis of jointed rock slope considering uncertainty in peak and residual strength parameters", Bulletin Eng. Geology Environ., 78, 913-930 https://doi.org/10.1007/s10064-017-1141-1.
- Ukritchon, B. and Keawsawasvong, S. (2018), "Stability of unlined square tunnels in hoek-brown rock masses based on lower bound analysis", Comput. Geotech., 105(1), 249-264. https://doi.org/10.1016/j.compgeo.2018.10.006.
- Viratjandr, C. and Michalowski, R.L. (2006), "Limit analysis of submerged slopes subjected to water drawdown", Canadian Geotech. J., 43(8), 802-814. https://doi.org/10.1139/T06-042.
- Yang, X.L. and Zou, Z.F. (2006). "Stability factors for rock slopes subjected to pore water pressure based on the Hoek-Brown failure criterion", J. Rock Mech. Mining Sci., 43(7), 1146-1152. https://doi.org/10.1016/j.ijrmms.2006.03.010.
- Younger, P.L. and Elliot, T. (1995), "Chalk fracture system characteristics: implications for flow and solute transport", Quarterly J. Eng. Geology Hydrogeology, 28(Supplement 1), S39-S50. https://doi.org/10.1144/gsl.qjegh.1995.028.s1.04.
- Zheng, Y.R., Shi, W.M. and Kong, W.X. (2004). "Calculation of seepage forces and phreatic surface under drawdown conditions", Chinese J. Rock Mech. Eng., 66(21), 2524-2533. https://doi.org/1000-6915(2004)18-3203-08. https://doi.org/10.00-6915(2004)18-3203-08