References
- Aksoy, O.C., Uyar, G.G., Utku, S., Safak, S. and Ozacar, V. (2019), "A new integrated method to design of rock structures", Geomech. Eng., 18(4), 339-352. https://doi.org/10.12989/gae.2019.18.4.339.
- Alipanahi, B., Delong, A., Weirauch, M.T. and Frey, B.J. (2015), "Predicting the sequence specificities of DNA- and RNAbinding proteins by deep learning", Nature Biotech., 33(8),831-838. https://doi.org/10.1038/nbt.3300.
- Audouze, C., Vuyst, F.De. and Nair, P.B. (2009), "Reduced-order modeling of parameterized PDEs using time-space-parameter principal component analysis", J. Numerical Methods Eng., 80 (8),1025-1057. https://doi.org/10.1002/nme.2540.
- Bai, X.D., Cheng, W.C., Ong, D.E.L. and Li, G. (2021), "Evaluation of geological conditions and clogging of tunneling using machine learning", Geomech. Eng., 25(1),59-73. http://dx.doi.org/10.12989/gae.2021.25.1.059.
- Bhattacharjee, S. and Matous, K. (2020), "A nonlinear data-driven reduced order model for computational homogenization with physics/pattern-guided sampling", Comput. Methods Appl. Mech. Eng., 359, 112657. https://doi.org/10.1016/j.cma.2019.112657.
- Cardoso, J.B., Almeida, J.R., Dias, J.M. and Coelho, P.G. (2008), "Structural reliability analysis using Monte Carlo simulation and neural networks", Adv. Eng. Software, 39(6), 505-513. https://doi.org/10.1016/j.advengsoft.2007.03.015.
- Cizmas, G.A., Richardson, B.R., Brenner, T.A., O'Brien, T.J. and Breault, R.W. (2008), "Acceleration techniques for reducedorder models based on proper orthogonal decomposition", J. Comput. Phys, 227(16), 7791-7812. https://doi.org/10.1016/j.jcp.2008.04.036.
- Duncan, Fama. M.E. (1993). "Numerical modeling of yield zones in weak rocks", Comprehensive Rock Engineering Vol. 2, Oxford, Pergamon, 49-75.
- Feng, X.T., Zhao, H. and Li, S. (2004), "A new displacement back analysis to identify mechanical geo-material parameters based on hybrid intelligent methodology", Int. J. Numer. Analytical Methods Geomech., 28(11), 1141-1165. https://doi.org/10.1002/nag.381.
- Fic, A., Bialecki, R.A. and Kassab, A.J. (2006), "Solving transient nonlinear heat conduction problems by proper orthogonal decomposition and the finite element method", Numer. Heat Transfer B, 48(2), 102-124. https://doi.org/10.1615/ICHMT.2004.CHT-04.390.
- FLAC3D 3.1 (2009), FLAC3D 3.1: Verification Problems, Itasca, Minneapolis, USA.
- Freno, B.A. and Cizmas, P.G.A. (2014), "A proper orthogonal decomposition method for nonlinear flows with deforming meshes", Int. J. Heat Fluid Flow, 50, 145-159. https://doi.org/10.1016/j.ijheatfluidflow.2014.07.001.
- Gomes, H.M. and Awruch, A. M. (2004), "Comparison of response surface and neural network with other methods for structural reliability analysis", Struct. Safety, 26(1), 49-67. https://doi.org/10.1016/S0167-4730(03)00022-5.
- Haghighat, E., Raissi, M., Moure, A., Gomez, H. and Juanes, R. (2021), "A physics-informed deep learning framework for inversion and surrogate modeling in solid mechanics", Comput. Methods Appl. Mech. Eng., 379, 113741. https://doi.org/10.1016/j.cma.2021.113741.
- Hamrouni, A., Dias, D and Sbartai, B. (2018), "Reliability analysis of a mechanically stabilized earth wall using the surface response methodology optimized by a genetic algorithm", Geomech. Eng., 15(4), 937-945. https://doi.org/10.12989/gae.2018.15.4.937.
- Hoek, E. (1999), "Putting numbers to geology-an engineer's viewpoint", Quarterly J. Eng. Geology Hydrogeology, 32(1), 1-19. https://doi.org/10.1144/GSL.QJEG.1999.032.P1.01.
- Hoek, E. and Brown, E.T. (1997), "Practical estimates of rock mass strength", Int. J. Rock Mech. Mining Sci., 34(8), 1165-1186. https://doi.org/10.1016/S0148-9062(97)00305-7.
- Huys, Quentin. J.M., Maia, Tiago. V. and Frank, Michael. J. (2016), "Computational psychiatry as a bridge from neuroscience to clinical applications", Nature Neurosci., 19(3), 404-413. https://doi.org/10.1038/nn.4238.
- Jain, P. and Chakraborty, T. (2018), "Numerical analysis of tunnel in rock with basalt fiber reinforced concrete lining subjected to internal blast load", Comput. Concrete, 21(4), 399-406. https://doi.org/10.12989/cac.2018.21.4.399.
- Jing, L. and Hudson, J.A. (2002), "Numerical methods in rock mechanics", Int. J. Rock Mech. Mining Sci., 39(4),409-427. https://doi.org/10.1016/S1365-1609(02)00065-5.
- Kathirvel, P. and Kaliyaperumal, S.R.M. (2017), "Probabilistic modeling of geopolymer concrete using response surface methodology", Comput. Concrete, 19(6), 737-744. https://doi.org/10.12989/cac.2017.19.6.737.
- Kenneth, C., Hall, Jeffrey. P. Thomas., and Earl, H. Dowell. (2000), "Proper orthogonal decomposition technique for transonic unsteady aerodynamic flows", AIAA J., 38(10),1853-1862. https://doi.org/10.2514/2.867.
- LeCun, Y., Bengio, Y. and Hinton, G. (2015), "Deep learning", Nature, 521, 436-444. https://doi.org/10.1038/nature14539.
- Li, D.Q., Zheng, D., Cao, Z.J., Tang, X.S. and Phoon, K.K. (2016), "Response surface methods for slope reliability analysis: Review and comparison", Eng. Geology, 203(25), 3-14. https://doi.org/10.1016/j.enggeo.2015.09.003.
- Li, Z., Liu, J., Xu, R., Liu, H. and Shi, W. (2021), "Study of grouting effectiveness based on shear strength evaluation with experimental and numerical approaches", Acta Geotechnica, https://doi.org/10.1007/s11440-021-01324-4.
- Liu, J., Jiang,Y., Zhang, Y. and Sakaguchi, O. (2021), "Influence of different combinations of measurement while drilling parameters by artificial neural network on estimation of tunnel support patterns", Geomech. Eng., 25(6), 439-454. http://dx.doi.org/10.12989/gae.2021.25.6.439.
- Lopes, P.A.M., Gomes H.M. and Awruch, A.M. (2010), "Reliability analysis of laminated composite structures using finite elements and neural networks", Compos. Structures, 92(7), 1603-1613. https://doi.org/10.1016/j.compstruct.2009.11.023.
- Luat, N.V., Lee, K. and Thai, D.K. (2020), "Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils", Geomech. Eng., 20(5), 385-397. http://dx.doi.org/10.12989/gae.2020.20.5.385.
- Luo, Z., Gao, J. and Xie, Z. (2015), "Reduced-order finite difference extrapolation model based on proper orthogonal decomposition for two-dimensional shallow water equations including sediment concentration", J. Math. Anal. Appl., 429(2), 901-923. https://doi.org/10.1016/j.apm.2012.10.051.
- Lv, Q. and Low, B.K. (2011), "Probabilistic analysis of underground rock excavations using response surface method and SORM", Comput. Geotech., 38(8),1008-1021. https://doi.org/10.1016/j.compgeo.2011.07.003.
- Mahdevari, S. and Torabi, S.R. (2012), "Prediction of tunnel convergence using Artificial Neural Networks", Tunnel Underground Space Technol., 28(1), 218-228. https://doi.org/10.1016/j.tust.2011.11.002.
- Mahdevari, S., Torabi, S.R. and Monjezi, M. (2012), "Application of artificial intelligence algorithms in predicting tunnel convergence to avoid TBM jamming phenomenon", Int. J. Rock Mech. Min. Sci, 55, 33-44. https://doi.org/10.1016/j.ijrmms.2012.06.005.
- Mathew, T.V., Prajith, P., Ruiz, R.O., Atroshchenko, E. and Natarajan, S. (2020), "Adaptive importance sampling based neural network framework for reliability and sensitivity prediction for variable stiffness composite laminates with hybrid uncertainties", Compos. Struct., 245, 112344. https://doi.org/10.1016/j.compstruct.2020.112344.
- Myers, R.H., Montgomery, D.C. and Anderson-Cook, C.M. (2009), Response Surface Methodology-Process and Product Optimization Using Designed Experiments 3rd edition, Wiley, New Jersey, USA.
- Oh, J., Moon, T., Canbulat, I. and Moon, J.S. (2019), "Design of initial support required for excavation of underground cavern and shaft from numerical analysis", Geomech. Eng., 17(6), 573-581. https://doi.org/10.12989/gae.2019.17.6.573.
- Pichler, B., Lackner, R. and Mang, H.A. (2003), "Back analysis of model parameters in geotechnical engineering by means of soft computing", J. Numer. Meth. Eng., 57(14), 1943-1978. https://doi.org/10.1002/nme.740.
- Rafiai, H. and Moosavi, M. (2012), "An approximate ANN-based solution for convergence of lined circular tunnels in elastoplastic rock masses with anisotropic stresses", Tunnel Underground Space Technol., 27(1), 52-59. https://doi.org/10.1016/j.tust.2011.06.008.
- Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J. and Carvalhais, N. (2019), "Deep learning and process understanding for data-driven earth system science", Nature, 566,195-203. https://doi.org/10.1038/s41586-019-0912-1.
- Saseendran, R. and Dodagoudar G.R. (2020), "Reliability analysis of slopes stabilised with piles using response surface method", Geomech. Eng., 21(6), 513-525. https://doi.org/10.12989/gae.2020.21.6.513.
- Severson, K. A., Attia, P. M., Jin, N., Perkins, N., Jiang, B., Yang, Z., Chen, M.H., Aykol, M., Herring, P.K., Fraggedakis, D., Bazant, M.Z., Harris, S.J., Chueh, W.C. and Braatz, R. D. (2019), "Data-driven prediction of battery cycle life before capacity degradation", Nature Energy, 4, 383-391. https://doi.org/10.1038/s41560-019-0356-8.
- Tang, M., Liu, Y. and Durlofsky, L.J. (2020), "A deep-learningbased surrogate model for data assimilation in dynamic subsurface flow problems", J. Comput. Physics, 413, 109456. https://doi.org/10.1016/j.jcp.2020.109456.
- Thakur, S.N., Chakraborty, S. and Ray, C. (2019), "Reliability analysis of laminated composite shells by response surface method based on HSDT", Struct. Eng. Mech., 72(2), https://doi.org/10.12989/sem.2019.72.2.203.
- Veer, L.J. and Bernards, R. (2008), "Enabling personalized cancer medicine through analysis of gene-expression patterns", Nature, 452, 564-570. https://doi.org/10.1038/nature06915.
- You, K. (2014), "A case study on the utilization of tunnel face mapping data for a back analysis based on artificial neural network", KSCE J. Civil Eng., 18, 751-759. https://doi.org/10.1007/s12205-014-0329-1.
- Zhang, B., Ma, Z., Wang, X., Zhang, J. and Peng, W. (2020), "Reliability analysis of anti-seismic stability of 3D pressurized tunnel faces by response surfaces method", Geomech. Eng., 20(1), 43-54. https://doi.org/10.12989/gae.2020.20.1.043.
- Zhao, H. (2008), "Slope reliability analysis using a support vector machine", Comput. Geotech., 35(3), 459-467. https://doi.org/10.1016/j.compgeo.2007.08.002.
- Zhao, H. (2021), "A reduced order model based on machine learning for numerical analysis: An application to geomechanics", Eng. Appl. Artificial Intelligent, 100, 104194. https://doi.org/10.1016/j.engappai.2021.104194.
- Zhao, H. and Yin, S. (2016), "Inverse analysis of geomechanical parameters by artificial bee colony algorithm and multi-output support vector machine", Inverse Problems Sci. Eng., 24(7), 1266-1281. https://doi.org/10.1080/17415977.2016.1178257.
- Zhao, H., Chen, B. and Li, S. (2021), "Determination of geomaterial mechanical parameters based on back analysis and reduced-order model", Comput. Geotech., 132, 104013. https://doi.org/10.1016/j.compgeo.2021.104013.
- Zhao, H., Chen, B., Li, S., Li, Z. and Zhu, C. (2021), "Updating models and the uncertainty of mechanical parameters for rock tunnels using Bayesian inference", Geosci. Frontiers, 12(5), 101198. https://doi.org/10.1016/j.gsf.2021.101198.
- Zhao, H.B. and Yin, S.D. (2009), "Geomechanical parameters identification by particle swarm optimization and support vector machine", Appl. Math Model, 33(10), 3997-4012. https://doi.org/10.1016/j.apm.2009.01.011.
- Zienkiewicz, O.Z., Taylor, R.L. and Zhu, J.Z. (2005), The Finite Element Method: Its Basis and Fundamentals, Sixth edition, Elsevier, Singapore, Singapore.