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Abstract

Estimating the locations of workers in a shipyard is beneficial for a variety of applications such as selecting 

potential forwarders for transferring data in IoT services and quickly rescuing workers in the event of industrial 

disasters or accidents. In this work, we propose a human movement stream processing system for estimating 

worker locations in shipyards based on Apache Spark and TensorFlow serving. First, we use Apache Spark to 

process location data streams. Then, we design a worker location prediction model to estimate the locations of 

workers. TensorFlow serving manages and executes the worker location prediction model. When there are

requirements from clients, Apache Spark extracts input data from the processed data for the prediction model

and then sends it to TensorFlow serving for estimating workers’ locations. The worker movement data is needed 

to evaluate the proposed system but there are no available worker movement traces in shipyards. Therefore, we 

also develop a mobility model for generating the workers' movements in shipyards. Based on synthetic data, the 

proposed system is evaluated. It obtains a high performance and could be used for a variety of tasks in shipyards.
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1. Introduction

In this work, we propose a human movement processing system for estimating the locations of workers in 

shipyards. Estimating worker locations can be valuable information for internet of thing (IoT) services, 

wireless networks, and automated systems [1, 2]. For example, knowing the estimated next locations of 

workers allows us to select the optimal worker for transmitting messages over a wireless network, and quickly 

find and rescue workers when accidents or industrial disasters occur. The human movement stream processing 

system is built based on Apache Spark [3] and TensorFlow serving [4].

Specifically, Apache Spark is a computing platform [3]. It is optimized for the execution of big data 

applications and provides an appropriate framework for continuously querying data without requiring access 

to system storage/disk. Therefore, Spark is a suitable framework for iterative processing, batch processing, 

streaming, and interactive queries. In this work, workers’ location data is streamed to Apache Spark by using
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the message queuing telemetry transport protocol (MQTT) [5]. Spark receives location data and partitions it

into batches. Each batch is processed to update to a data frame. In this work, we also design a worker location 

prediction model to estimate worker locations via TensorFlow Serving [4]. TensorFlow Serving is a flexible, 

high-performance serving solution for machine learning models. That is optimized for industrial operation. 

TensorFlow Serving enables faster deployment of new algorithms and experiments while maintaining the 

server architecture and APIs that are already in place. When Apache Spark receives a request from a client, it 

extracts the input data for the prediction model from the data frame. Then, the input data and the request are 

transmitted to TensorFlow serving for estimating worker locations. Finally, Apache Spark receives the result 

from TensorFlow serving and returns it to the client. 

The movement traces of workers are required for training the prediction model and validating the proposed

system. However, there is no available movement dataset of workers in shipyards. Therefore, we proposed a 

mobility model for workers in shipyards. Numerous human movement models have been studied [6, 7], but 

the majority of them focus on people's daily movements. This cannot accurately reflect the movements of 

shipyard workers. For example, the urban context-aware mobility model [6] has been studied to investigate 

more realistic flight and pause time distributions. The mobility model described in [7] considers both social 

relationships between people and the characteristics of human movement. However, such mobility models take 

into account only the general situation of daily human movement in urban areas. None of them are specifically 

concerned with the characteristics of shipyard worker movement. In our proposed model, we consider the 

workflow when generating workers’ movements. First, workers are classified into types. Workers belonging 

to the same type exhibit similar movement characteristics (e.g., movement speed and pause time). Then, each 

type is separated into teams. A team's members share the same workflow and workspace. Workers move in 

accordance with their workflow.

Finally, to verify the proposed system, the synthetic data is used for training the worker location prediction 

model. An application is developed to stream workers’ location data to Apache Spark. Then, the estimated 

results are obtained with the synthetic data.

The rest of this paper is organized as follows. First, we describe how to generate worker movements in 

shipyards in Section 2. Then, Section 3 presents the human movement stream processing system. The 

experimental results are discussed in Section 4. Finally, we conclude this paper in Section 5.

2. Generating Worker Movements in Shipyards

In this section, the movement area of workers is described. Then, a mobility model of workers in shipyards 

is proposed based on their workflow. 

In this work, a shipyard layout in [8] is used as the movement area of workers. There are multiple subareas 

in a shipyard. In this study, we focus on the movement of workers inside a subarea (i.e., unit assembly (UA)). 

The area of UA is 310m×400m and it is divided into 32 blocks. Each block has the size of 77.5m×50m and is 

partitioned into 20 units.

Workers in UA are categorized into a variety of types. We consider that workers of a particular type perform 

the same type of tasks. For instance, workers in type 1 welds and cuts steel. Workers in type 2 paint ships. 

Workers in type 3 are those who operate forklift trucks. Workers within a type will move at a similar speed 

and pause time. 
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Now, we discuss the mobility model of workers. Specifically, workers in a type are grouped into teams. At 

the beginning of a day, each team is randomly assigned to one of 32 blocks in UA. The team members will 

work in the designated block throughout the day. First, workers in the team randomly select a unit in the 

assigned block to start their work. An example of the workflow in one of 32 blocks in the area of UA is shown 

in Figure 1. In the figure, worker �� starts his/her work at unit �1 and then follows the workflow to move 

through units �2, �3, . . . , �20 and complete tasks at each unit. After completion of the task at unit �20, 

worker �� moves to unit �1 and starts a new process following the workflow.

Figure 1. An example of workflow in a block.

In reality, we observe that once the pause time has expired (i.e., the worker has completed the job) at the current 

unit, the worker has a high probability of visiting the next unit in the workflow and a low probability of visiting 

other units. For instance, worker � has completed his or her job at unit �. To reflect this realistic movement, 

we define �����
�

as the probability that workers will visit the next unit in the workflow, and it is set to a high 

value. Let �� denote the set of neighbor units of unit � (e.g., ��� = {�9, �10}). The number of the same 

team workers of worker � in unit � is defined as ��
�
. The probability that worker � visits unit � in �� is 

defined as ��
�. It is calculated as follows:
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�
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�
�
�
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Equation (1) indicates that worker � prefers to visit a neighbor unit with a high value of ��
� . This reflects the 

real context that workers tend to go to the place where a lot of their team members are. 

Finally, the worker randomly selects a position to visit within the selected unit. The movement speed and 

pause time of workers are based on real mobility traces [9-10]. 

3. The Human Movement Stream Processing System

In this section, we first present how workers send locations to Apache Spark via MQTT protocol [5]. Then, 

the processing of location data in Apache Spark is described. Finally, estimating worker location with 

TensorFlow serving is discussed. The worker movement stream processing system is shown in Figure 2.
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Figure 2. The human movement stream processing system.

3.1 Sending Worker’s Location with MQTT Protocol

MQTT protocol is used for workers to send their location data to Apache Spark. MQTT is a lightweight, 

publish-subscribe network protocol for exchanging messages between devices. This protocol is extensively 

used in industrial networks because of its scalability and support for dynamic application topologies. These 

characteristics are achieved by decoupling publishers from subscribers, which enables the addition of new data 

sources or the replacement of existing modules. Client connections are always handled by a broker in MQTT. 

A client of MQTT could be either a publisher or a subscriber. A publisher is a client who sends messages to 

the broker on a particular topic. A subscriber will subscribe to topics on MQTT broker. When the broker 

receives messages from publishers about a topic, it forwards them to subscribers who have subscribed to the 

topic. As shown in Figure 2, in our system, workers are publishers who publish information to the MQTT 

broker about the topic of the worker location. Apache Spark is a subscriber to the worker location topic. When 

a worker sends the location to the MQTT broker, the broker will transmit the location data to Apache Spark.

3.2 Processing Data Stream by Using Apache Spark

After receiving location data from the MQTT broker, this subsection discusses how Apache Spark processes 

received data and client requests.

Apache Spark is a framework for performing distributed computation on big data by using in-memory 

primitives. This platform allows user programs to put data into memory and frequently query it, which makes 

it a great tool for real-time and iterative processing. Spark is built on distributed data structures known as 

resilient distributed datasets (RDDs). Operations on RDDs automatically partition tasks and maintain the 

location of persistent data. Additionally, RDDs are a flexible tool that enables programmers to store 

intermediate results in memory as a data frame or on disk for later reuse, as well as adjust partitioning for 

optimal data placement.

By processing data in batches, Spark streaming enables us to use Spark's API in streaming environments. 
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Each batch contains multiple RDDs that were received from the MQTT broker during a time window. As 

shown in Figure 2, Spark streaming receives the worker’s location data then divides data into batches. The 

steps for data processing are applied to each batch in Spark core. In our system, an RDD contains information 

of a record from the workers. For instance, this includes the identification of the worker, the worker type, the 

worker team, the recording time, the unit (where the worker is), and the location coordinates. From the 

recording time, information about the day in the week and the time slot of the day is obtained. Other necessary 

information is also gathered such as the worker identification and the unit.

The collected information is then processed by Spark SQL. The data frame, a new data structure for 

structured data, is introduced in Spark SQL and supports the use of SQL queries in Spark programs. It allows

us to update and get data from a data frame. In this work, the collected data (i.e., worker identification, the 

time slot of the day, the day in the week, and the unit) is maintained in a data frame. When a new batch of data 

is coming, the data frame is also updated. 

3.3 Estimating Worker’s Location with TensorFlow Serving

In this subsection, we first design a worker location prediction model. Then, estimating the worker’s 

location by using TensorFlow Serving is discussed.

3.3.1 The worker location prediction model

To predict the next location of workers, a worker location prediction model is proposed. That is a recurrent 

neural network (RNN)-based model using long short-term memory (LSTM) cells [11, 12]. The model will take 

worker locations at current and previous time slots as an input and then outputs the location of workers in the 

very next time slot.

The architecture of the proposed model is shown in Figure 3. Specifically, a one-hot vector is used to 

distinguish workers. Let ��
� denote the one-hot vector that indicates worker identification of worker �. In 

this model, we consider the working time from 8:00 to 18:00. The working time is divided into time slots of 

15 minutes. The one-hot vector which represents the time slot t in a day is denoted as ��
�. The day in the week 

is also considered and let ��
� be the one-hot vector that indicates the day in the week of time slot �. The one-

hot vector that indicates the location (i.e., the unit) of worker � at time slot � is defined as ��,�
� . The input 

is the information of workers from time slot (� − � + 1) to time slot � (e.g., ��,� = { ��
� , ��

� , ��
�, ��,�

� }). Let

��,��� define the output, which is a vector with elements that are probabilities that worker � visits locations 

at time slot � + 1. For example, with ��,��� = [0.1, 0.05, 0.01, …, 0.3], the predicted probability for visiting 

unit 1 is 0.1; the predicted probability for visiting unit 2 is 0.05.

Figure. 3 The worker location prediction model.
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3.3.2 Running the worker location prediction model with TensorFlow serving

TensorFlow Serving is a machine learning serving platform that enables on-demand model inference. It is 

widely used in industrial environments and provides high-performance serving. TensorFlow serving decouples 

prediction model from the rest of the system. That allows switching model versions and simultaneously serving 

multiple models. TensorFlow Serving provides low latency serving and it is self-service, requiring users to 

deploy and operate it on local (or cloud) infrastructure in order to perform predicting. 

In our system, TensorFlow serving is deployed on a server. It manages worker location prediction models 

and versions of the models. Specifically, the proposed worker location prediction model is put in TensorFlow 

serving and Docker is used as the execution environment of the prediction model. When Apache Spark sends 

a request and data (the input data for the prediction model) to TensorFlow serving, TensorFlow serving will 

check that which model and which version are required. Then, the required model with a suitable version is 

used for estimating the worker's next location by using the input data from Apache Spark.

3.4 Processing client’s requests

Now, we discuss how to handle the client's request. A thread is started in Apache Spark to receive and 

process client requests. Clients may submit requests via any IoT protocol (e.g., MQTT and TCP socket). The 

TCP socket protocol is used to communicate between Spark and clients in this work. When Apache Spark 

receives a request from a client for the location of a worker, it extracts the necessary information from the data 

frame (i.e., the worker identification, the unit, the day in the week, and the unit) by using Spark SQL. The data 

is then sent to TensorFlow serving, which is used to estimate the worker's next location. Finally, the estimating 

result is sent to Apache Spark and Apache Spark responds to the client.

4. Experimental Results

In this work, the mobility model of workers generates data for training the worker location prediction model. 

A program is used to send workers’ location data to the MQTT broker. The sent location data is the synthetic 

data from the mobility model. The proposed system will process and respond to the client base on estimating 

locations of workers with those data.

4.1 Experimental Setup

In the mobility model of workers, �����
� is set to 0.98. The number of workers is set to 200. The workers 

are partitioned into 4 types (50 workers in a type). Each type has 5 teams (10 workers in a team). The 

movements of workers are generated for 90 days and 10 hours per day. Based on the real mobility trace [9-10], 

the pause time of workers is set to follow a truncated power-law distribution with a range of values from 6 to 

360 minutes and the movement speed follows a log normal distribution, ���������(−0.684, 0.97� ).

From 90 days of the synthetic data, we use 54 days for training, 18 days for validating, and 18 days for 

testing the worker location prediction model. The input and output data format of the prediction model is 

presented in Table 1. The input (��,�) includes the identification of worker (��
� ), the day in the week (��

�), the 

time slot (��
�), and the location of worker (��,�

� ). Those input features are represented by one-hot vectors. The 

output is a vector (��,���) with elements that are predicted probabilities that worker � visits locations at time 

slot � + 1. The detailed settings of the prediction model are shown in Table 2. The number of LSTM cells is 

set to 16. Then, the number of lookback time steps is 4. Finally, the number of fully connected neurons is set 

to 1024.



A Human Movement Stream Processing System for Estimating Worker Locations in Shipyards                       141

Table 1. Input and output data format of the worker location prediction model.

Table 2. Settings of the worker location prediction model.

Parameter Value

Cell units 16

Lookback time steps 4

FC neurons 1024

The Apache Spark and TensorFlow serving are running on a machine. The program which simulates 

streaming location from 200 workers is running on a machine, and 10 clients send the request from another 

machine. Those machines have the same configuration as follows:

· Intel(R) Xeon(R) CPU E3-1240 V2 @ 3.4Ghz (8 CPUs)

· 8GB 1600 MHz DIMM DRAM

· 1TB Hard Disk Drive

· 90 Mbps network connection

4.2 Experimental Results

Clients could get the worker’s next location for top-1 accuracy, top-3 accuracy, and top-5 accuracy from 

the proposed system. The accuracy of the proposed system with the synthetic data is shown in Table 3. As can 

be seen in Table 3, the system achieves 68.52% accuracy point with top-1, 97.26% accuracy point with top-3, 

and 98.67% accuracy point with top-5. In general, the accuracy increases from top-1 to top-5. The obtained 

results also indicate that the position of workers is accurately estimated on top-3. That information is valuable

for various applications in shipyards. The proposed system is run well with the configuration of 10 clients and 

200 workers.

Table 3. Average accuracy of the proposed system on the synthetic data

Top – 1 accuracy Top – 3 accuracy Top – 5 accuracy

68.52 97.26 98.67

5. Conclusion

In this work, we propose a human movement stream processing system for estimating worker locations in 

shipyards. First, a mobility model is designed to generate the movements of workers in shipyards. Then, a 

worker location prediction model is developed to estimate the location of workers in shipyards. The prediction 

��,� = { ��
� , ��

� , ��
�, ��,�

� } ��,���

��
� ��

� ��
� ��,�

�

Vector

(1x640)
One-hot vector 

(1x200)

One-hot vector

(1x7)

One-hot vector

(1x41)

One-hot vector 

(1x640)
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model is trained on the synthetic data from the mobility model. Apache Spark is used to process location data 

streams from workers, receive the client requests, get the estimation results from TensorFlow serving, and 

response to clients. TensorFlow serving manages prediction models and runs prediction models when receives 

the request from Apache Spark. The proposed system achieves high accuracy and performs well with a large 

number of workers and clients. In future work, to analyze the performance of the system in the real situation, 

we plan to collect the real data of worker movements in shipyards and run the system with the real data.
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