DOI QR코드

DOI QR Code

Removal of Hg2+ ions using tri n-butyl phosphate based supported liquid membrane from aqueous samples

  • Received : 2020.02.01
  • Accepted : 2021.10.04
  • Published : 2021.11.25

Abstract

Mercury is a poisonous heavy metal that causes deleterious effects on public health and the ecosystem, even with a trace level of contamination. Selective separation of mercury ions in an aqueous environment is a challenging task, while supported liquid membrane poses to be a promising tool. In this research work, the removal of mercury ions using a porous PTFE membrane with TBP as a carrier has been studied. Batch experiments were carried out in an SLM reactor with feed phase and strip phase solution on either side of the membrane. Maximum removal of 97% of Hg2+ ions occurred under optimum conditions, namely, 0.5 M of HCl (feed), 0.4 M NaOH (strip), 90% of TBP, stirring speed at 300 rpm and 3 h of reaction time. SEM analysis of the membrane confirmed the formation of a complex between TBP and Hg2+ ions. SLM was found to be stable for 18 h. The high selectivity of the SLM towards Hg2+ ions was unaltered in the presence of Cd2+, Ni2+ and Zn2+ ions. The proposed SLM was used for the treatment of spiked seawater samples, wastewater from a thermal power plant, and contaminated lake water samples. The results indicated that the SLM system was highly efficient in removing Hg2+ ions from real contaminated samples.

Keywords

Acknowledgement

Author Mr. Ayyavoo Saravanan is highly thankful to Basic Scientific research fellowship granted by University Grants commission, Government of India for the financial assistance and thankful to Management of NLC India Limited, Neyveli for their immense support.

References

  1. Amiri, A.A., Safavi, A., Hasaninejad, A.R., Shrghi, H. and Shamsipur, M. (2008), "Highly selective transport of silver ions through a supported liquid membrane using calix[4]pyrroles as suitable ion carriers", J. Member. Sci., 325(1), 295-300. https://doi.org/10.1016/j.memsci.2008.07.041.
  2. Anupama, R. and Palnivelu, K. (2005), "Removal and recovery of lead from aqueous solution using supported liquid membrane", Indian. J. Chem. Technol., 12(4), 436-440. http://nopr.niscair.res.in/handle/123456789/8664.
  3. Barron-Zambrano, J., Laborie, S., Viers, P., Rakib, M. and Durand, G. (2004), "Mercury removal and recovery from aqueous solutions by coupled complexation-ultrafiltration and electrolysis", J. Membr. Sci., 229(1-2), 179-186. https://doi.org/10.1016/j.memsci.2003.10.028.
  4. Bhandare, A.A. and Argekar, A.P. (2002), "Transport of mercury (II) ion through a supported liquid membrane containing a tri-isobutylphosphine sulfide (Cyanex 471X) as a mobile carrier", J. Chem. Technol. Biot., 77(7), 811-816. https://doi.org/10.1002/jctb.643.
  5. Blue, L.Y., Van Aelstyn, M.A., Matlock, M. and Atwood, D.A. (2008), "Low-level mercury removal from groundwater using a synthetic chelating ligand", Water Res., 42(8-9), 2025-2028. https://doi.org/10.1016/j.watres.2007.12.010.
  6. Bohrer, M.P. (1983), "Diffusional boundary layer resistance for membrane transport", Ind. Eng. Chem. Fundamen., 22(1), 72-78. https://doi.org/10.1021/i100009a012.
  7. Chakrabarty, K., Saha, P. and Ghoshal, A.K. (2010a), "Separation of mercury from its aqueous solution through supported liquid membrane using environmentally benign diluents", J. Membr. Sci., 350(1-2), 395-401. https://doi.org/10.1016/j.memsci.2010.01.016.
  8. Chakrabarty, K., Saha, P. and Ghoshal, A.K. (2010b), "Simultaneous separation of mercury and lignosulfonate from aqueous solution using supported liquid membrane", J. Membr. Sci., 346(1), 37-44. https://doi.org/10.1016/j.memsci.2009.09.010.
  9. Chaturabul, S., Srirachat, W., Wannachod, T., Ramakul, P., Pancharoen, U. and Kheawhom, S. (2015), "Separation of mercury (II) from petroleum produced water via hollow fiber supported liquid membrane and mass transfer modeling", Chem. Eng. J., 265, 34-46. https://doi.org/10.1016/j.cej.2014.12.034.
  10. Chaudry, M.A., Bukhari, N., Mazhar, M. and Abbasi, W. (2007), "Coupled transport of chromium (III) ions across triethanolamine/cyclohexanone based supported liquid membranes for tannery waste treatment", Sep. Purif. Technol., 55(3), 292-299. https://doi.org/10.1016/j.seppur.2006.12.008.
  11. Clever, H.L., Johnson, S.A. and Derrick, M.E. (1985), "The solubility of mercury and sparingly soluble mercury salts in water and aqueous electrolyte solutions", J. Phys. Chem. Ref. Data., 14(3), 631-680. https://doi.org/10.1063/1.555732.
  12. Dabrowski, A., Hubicki, Z., Podkoscielny, P. and Robens, E. (2004), "Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method", Chemosphere., 56(2), 91-106. https://doi.org/10.1016/j.chemosphere.2004.03.006.
  13. Danesi, P.R. (1984), "A simplified model for the coupled transport of metal ions through hollow-fiber supported liquid membranes", J. Membr. Sci., 20(3), 231-248. https://doi.org/10.1016/S0376-7388(00)82001-3.
  14. EPA (1987), N-Hexane Health Advisory; U.S. Environmental Protection Agency, U.S.A. https://www.epa.gov/.
  15. Fontas, C., Hidalgo, M., Salvado, V. and Antico, E. (2005), "Selective recovery and preconcentration of mercury with a benzoylthiourea-solid supported liquid membrane system", Anal. Chim. Acta, 547(2), 255-261. https://doi.org/10.1016/j.aca.2005.05.044.
  16. Hajarabeevi, N., Bilal, I.M. and Palanivelu, K. (2006), "Solvent extraction of silk dyes acid red 10B and acid pink using tri n-butyl phosphate as carrier", Indian. Chem. Eng., 48(3), 154-159.
  17. Hajarabeevi, N., Bilal, I.M., Amalraj, S. and Palanivelu, K. (2007), "Textile anionic dyes recovery using tri-n-butyl phosphate as carrier through supported liquid membrane", J. Environ. Sci. Eng., 49(1), 33-40.
  18. Hutchison, A.R and Atwood, D. (2003), "Mercury pollution and remediation: the chemist's response to a global crisis", J. Chem. Crystallogr., 33(8), 631-645. https://doi.org/10.1023/A%3A1024906212586.
  19. Jose, C., Imelda, S., Ricardo, N., Maria, M. and Eric, G. (2010), "Mercury recovery from aqueous solutions by polymer-enhanced ultrafiltration using a sulfate derivative of chitosan" Membr. Water. Treat., 1(4), 231-251. https://doi.org/10.12989/mwt.2010.1.4.231.
  20. Karunasagar, D., Balarama Krishna, M.V., Anjaneyulu, Y. and Arunachalam, J. (2006), "Studies of mercury pollution in a lake due to a thermometer factory situated in a tourist resort: Kodaikkanal, India", Environ. Pollut., 143(1), 153-158. https://doi.org/10.1016/j.envpol.2005.10.032.
  21. Kazemi, P., Peydayesh, M., Bandegi, A., Mohammadi, T. and Bakhtiari, O. (2014), "Stability and extraction study of phenolic wastewater treatment by supported liquid membrane using tributyl phosphate and sesame oil as liquid membrane", Chem. Eng. Res. Des., 92(2), 375-383. https://doi.org/10.1016/j.cherd.2013.07.023.
  22. Kislik, V.S. (2010), Liquid Membranes: Principles And Applications In Chemical Separation And Wastewater Treatment, Elsevier Publications, Amsterdam, Netherlands.
  23. Kocherginsky, N.M., Yang, Q. and Seelam, L. (2007), "Recent advances in supported liquid membrane technology", Sep. Purif. Technol., 53(2), 171-177. https://doi.org/10.1016/j.seppur.2006.06.022.
  24. Loo, A.Y.Y., Lay, Y.P., Kutty, M.G., Timpe, O., Behrens, M. and Hamid, S.B.A. (2012), "Spectrometric determination of mercury with iodide and rhodamine B", Sains Malaysiana, 41(2), 213-218.
  25. Lothongkum, A.W., Suren, S., Chaturabul, S., Thamphiphit, N. and Pancharoen, U. (2011), "Simultaneous removal of arsenic and mercury from natural-gas-co-produced water from the Gulf of Thailand using synergistic extractant via HFSLM", J. Membr. Sci., 369(1-2), 350-358. https://doi.org/10.1016/j.memsci.2010.12.013.
  26. Malik, M.A., Hashim, M.A. and Nabi, F. (2011), "Ionic liquids in supported liquid membrane technology", Chem. Eng. J., 171(1), 242-254. https://doi.org/10.1016/j.cej.2011.03.041.
  27. Maron, L., Dommergue, A., Ferrari, C., Delacour-Larose, M. and Fain, X. (2008), "How elementary mercury reacts in the presence of halogen radicals and/or halogen anions: A DFT investigation", Chem. Eur. J., 14(27), 8322-8329. https://doi.org/10.1002/chem.200800491.
  28. Naidu, K.A., Naidu, K.A. and Ramamurthi, R. (1983), "Histological alterations in liver and intestine of teleost Sarotherodon mossambicus in response to mercury toxicity", Ecotoxicol. Environ. Safe., 7(6), 566-575. https://doi.org/10.1016/0147-6513(83)90016-7.
  29. Pancharoen, U., Prakorn, R., Weerawat, P. and Milan, H. (2006), "Feasibility study on the separation of uranium 375 and thorium by a hollow fiber supported liquid membrane and mass transfer modelling", J. Ind. Eng. Chem., 12(5), 673-681.
  30. Pancharoen, U., Somboonpanya, S., Chaturabul, S. and Lothongkum, A.W. (2010), "Selective removal of mercury as HgCl42- from natural gas well produced water by TOA via HFSLM", J. Alloys. Compd., 489(1), 72-79. https://doi.org/10.1016/j.jallcom.2009.08.145.
  31. Pont, N., Salvado, V. and Fontas, C. (2018), "Applicability of a supported liquid membrane in the enrichment and determination of cadmium from complex aqueous samples", Membranes, 8(2), 21. https://doi.org/10.3390/membranes8020021.
  32. Prapasawat, T., Ramakul, P., Satayaprasert, C., Pancharoen, U. and Lothongkum, A.W. (2008), "Separation of As (III) and As (V) by hollow fiber supported liquid membrane based on the mass transfer theory", Korean J. Chem. Eng., 25(1), 158-163. https://doi.org/10.1007/s11814-008-0029-y.
  33. PSA 10.025 (2010), Millennium Merlin User Manual Version 4; PS Analytical Limited, U.K. https://www.psanalytical.com/.
  34. Raffaele, M. and Pietro, A. (2011), "Recent progress in supported liquid membrane technology: Stabilization and feasible applications", Membr. Water. Treat., 2(4), 207-223. https://doi.org/10.12989/mwt.2011.2.4.207.
  35. Ren, Y., Liu, C., Zhao, H., Lv, L. and Yang, L. (2015), "Separation of phosphoric acid and nitric acid mixtures with tri-n-butyl phosphate at 303.2 K", Fluid Phase Equilibr., 394, 38-45. https://doi.org/10.1016/j.fluid.2015.03.010.
  36. Sangtumrong, S., Ramakul, P., Satayaprasert, C., Pancharoen, U. and Lothongkum, A.W. (2007), "Purely separation of mixture of mercury and arsenic via hollow fibre supported liquid membrane", J. Ind. Eng. Chem., 13(5), 751-756.
  37. Sato, T., Enokida, T. and Noguchi, Y. (2002), "Liquid-Liquid extraction of mercury (II) from hydrochloric acid solutions by tributyl phosphate", Solvent Extr. Res. Dev., 9, 1-11.
  38. Seyfi, S. and Abdi, M. (2009), "Extraction of titanium (IV) from acidic media by tri-n-butyl phosphate in kerosene", Miner Eng., 22(2), 116-118. https://doi.org/10.1016/j.mineng.2008.05.003.
  39. Shamsipur, M., Hashemi, O.R. and Lippolis, V. (2006), "Supported liquid membrane system for simultaneous separation of silver (I) and mercury (II) from dilute feed solutions", J. Membr. Sci., 282(1-5), 322-327. https://doi.org/10.1016/j.memsci.2006.05.034.
  40. Sharma, A., Sharma, A. and Arya, R.K (2015), "Removal of mercury (II) from aqueous solution: A review of recent work", Sep. Sci. Technol., 50(9), 1310-1320. https://doi.org/10.1080/01496395.2014.968261.
  41. Suren, S. and Pancharoen, U. (2012), "Selective separation of lead and mercury ions from synthetic produced water via a hollow fiber supported liquid membrane", Int. J. Chem. Molecul. Eng., 6(8), 840-845. https://doi.org/10.5281/zenodo.1060353.
  42. Tor, A., Arslan, G., Muslu, H., Celiktas, A., Cengeloglu, Y. and Ersoz, M. (2009), "Facilitated transport of Cr (III) through polymer inclusion membrane with di (2-ethylhexyl) phosphoric acid (DEPHA)", J. Membr. Sci., 329(1-2), 169-174. https://doi.org/10.1016/j.memsci.2008.12.032.
  43. UNEP (2013), United Nation Environment Programme; Global Mercury Assessment, Switzerland. https://www.unep.org/.
  44. Venkateswaran, P. and Palanivelu, K. (2005), "Studies on recovery of hexavalent chromium from plating wastewater by supported liquid membrane using tri-n-butyl phosphate as carrier", Hydrometallurgy., 78(1-2), 107-115. https://doi.org/10.1016/j.hydromet.2004.10.021.
  45. Jessie, P. and Gibb, H. (2008), Mercury: Assessing the Environmental Burden of Disease at National and Local Levels, World Health Organization, Geneva.
  46. Xiao, X., Yang, N., Wang, Z. and Huang, Y. (2016), "Determination of trace mercury (II) in wastewater using on-line flow injection spectrometry coupled with supported liquid membrane enrichment", Anal. Methods., 8(3), 582-586. https://doi.org/10.1039/C5AY02725J.
  47. Zhang, G., Chen, D., Wei, G., Zhao, H., Wang, L., Qi, T., Meng, F. and Meng, L. (2015), "Extraction of iron (III) from chloride leaching liquor with high acidity using tri-n-butyl phosphate and synergistic extraction combined with methyl isobutyl ketone", Sep. Purif. Technol., 150, 132-138. https://doi.org/10.1016/j.seppur.2015.07.001.
  48. Zhang, W., Liu, J., Ren, Z., Wang, S., Du, C. and Ma, J. (2009), "Kinetic study of chromium (VI) facilitated transport through a bulk liquid membrane using tri-n-butyl phosphate as carrier", Chem. Eng. J., 150(1), 83-89. https://doi.org/10.1016/j.cej.2008.12.009.