References
- Ataollahi Oshkour, A., Pramanik, S., Shirazi, S.F.S., Mehrali, M., Yau, Y.H. and Abu Osman, N.A. (2014), "A comparison in mechanical properties of cermets of calcium silicate with Ti-55Ni and Ti-6Al-4V alloys for hard tissues replacement", Scientif. World J., 2014, 616804. https://doi.org/10.1155/2014/616804
- Bahraminasab, M., Ghaffari, S. and Eslami-Shahed, H. (2017), "Al2O3-Ti functionally graded material prepared by spark plasma sintering for orthopaedic applications", J. Mech. Behav. Biomed. Mater., 72, 82-89. https://doi.org/10.1016/j.jmbbm.2017.04.024
- Bheemaneni, G., Saravana, S. and Kandaswamy, R. (2018), "Processing and characterization of poly (butylene adipate-co-terephthalate) / wollastonite biocomposites for medical applications", Materials Today: Proceedings, 5(1), 1807-1816. https://doi.org/10.1016/j.matpr.2017.11.279
- Claussen, N., Wu, S. and Holz, D. (1994), "Reaction bonding of aluminum oxide (RBAO) composites: processing, reaction mechanisms and properties", J. Eur. Ceram. Soc., 14(2), 97-109. https://doi.org/10.1016/0955-2219(94)90097-3
- Guzman, R., Fernandez-Garcia, E., Gutierrez-Gonzalez, C.F., Fernandez, Adolfo., Lopez-Lacomba, J. L. and Lopez-Esteban, S. (2016), "Biocompatibility assessment of spark plasma-sintered alumina-titanium cermets", J. Biomater. Applicat., 30(6), 759-769. https://doi.org/10.1177/0885328215584858
- Karacan, I., Ben-Nissan, B., Wang, H.A., Juritza, A., Swain, M.V., Muller, W.H., Chou, J., Stamboulis, A., Macha, I.J. and Taraschi, V. (2019), "Mechanical testing of antimicrobial biocomposite coating on metallic medical implants as drug delivery system", Mater. Sci. Eng. C, 104, 109757. https://doi.org/10.1016/j.msec.2019.109757
- Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T. and Yamamuro, T. (1990), "Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3", J. Biomed. Mater. Res., 24(6), 721-734. https://doi.org/10.1002/jbm.820240607
- Konopka, K. (2015), "Alumina composites with metal particles in ceramic matrix", Powder Metall. Metal Ceram., 54, 374-379. https://doi.org/10.1007/s11106-015-9724-5
- Maji, A. and Choubey, G. (2018), "Microstructure and mechanical properties of alumina toughened zirconia (ATZ)", Materials Today: Proceedings, 5(2), 7457-7465. https://doi.org/10.1016/j.matpr.2017.11.417
- Miyoshi, T., Sagawa, N. and Sassa, T. (1985), "Study on fracture toughness evaluation for structural ceramics", Transact. Japan Soc. Mech. Eng., 51, 2489-2497. https://doi.org/10.1299/kikaia.51.2489
- Quinn, J., McFadden, R., Chan, C.W. and Carson, L. (2020), "Titanium for orthopaedic applications: an overview of surface modification to improve biocompatibility and prevent bacterial biofilm formation", Science, 23(11), 101745. https://doi.org/10.1016/j.isci.2020.101745
- Rocha-Rangel, E., Lopez-Hernandez, J., Calles-Arriaga, C.A., Pech-Rodriguez, W.J., Armendariz-Mireles, E.N., Castillo-Robles, J.A. and Rodriguez-Garcia, J.A. (2019), "Effect of additions of metal sub-micron particles on properties of alumina matrix composites", J. Mater. Res., 34, 2983-2989. https://doi.org/10.1557/jmr.2019.178
- Saini, M., Singh, Y., Arora, P., Arora, V. and Jain, K. (2015), "Implant biomaterials: A comprehensive review", World J. Clinical Cases, 3(1), 52-57. https://doi.org/10.12998/wjcc.v3.i1.52
- Scharager-Lewin, D., Arrano-Scharager, D.P. and Biotti-Picand, J. (2016), "Biomateriales en levantamiento de seno maxilar para implantes dentales", Revista Clinica Periodoncia, Implantologia y Rehabilitacion Oral, 10(1), 20-25. https://doi.org/10.1016/j.piro.2016.06.002
- Wintermantel E., Mayer, J. and Goehring, T.N. (2001), "Composites for Biomedical Applications", Encyclopedia of Materials: Science and Technology, 1371-1376.
- Xifre-Perez, E., Ferre-Borull, J., Pallares, J. and Marsal, L.F. (2015), "Mesoporous alumina as a biomaterial for biomedical applications", Mesoporous Biomater., 2, 13-32. https://doi.org/10.1515/mesbi-2015-0004