DOI QR코드

DOI QR Code

Manufacture of Al2O3/Ti composite by aluminum bonding reaction for their use as a biomaterial

  • Alvarez-Carrizal, Ruth P. (Research Department, Universidad Politecnica de Victoria) ;
  • Rodriguez-Garcia, Jose A. (Research Department, Universidad Politecnica de Victoria) ;
  • Cortes-Hernandez, Dora A. (Cinvestav-Saltillo, Avenida Industria Metalurgica1062) ;
  • Esparza-Vazquez, Sergio J. (Research Department, Universidad Politecnica de Victoria) ;
  • Rocha-Rangel, Enrique (Research Department, Universidad Politecnica de Victoria)
  • Received : 2021.02.02
  • Accepted : 2021.10.28
  • Published : 2021.12.25

Abstract

This research shows the development of a composite material with an alumina matrix reinforced with different percentages of titanium (0.0%, 0.5%, 1%, 2% y 3%) with the intention of analyzing their mechanical and biocompatible properties for its possible application as a biomaterial. Alumina was synthesized using the reaction bonding aluminum oxide (RBAO) methodology. The powders resulting from the milling process had a size distribution ranging from nanometers to 2 microns. By means of X-ray diffraction and differential thermal analysis, it was determined that aluminum oxidizes in both solid and liquid states. It was also found that the alumina formation reaction is complete at 900℃. Using scanning electron microscopy, it was determined that the microstructure has fine grain sizes and homogeneous morphology. Likewise, the elastic modulus and fracture toughness of the composites obtained were determined, results indicate that these properties are higher than the properties of cortical bone. In addition, bioactivity was promoted using the biomimetic method. The results obtained demonstrate that the resulting composite can be used as a biomaterial.

Keywords

References

  1. Ataollahi Oshkour, A., Pramanik, S., Shirazi, S.F.S., Mehrali, M., Yau, Y.H. and Abu Osman, N.A. (2014), "A comparison in mechanical properties of cermets of calcium silicate with Ti-55Ni and Ti-6Al-4V alloys for hard tissues replacement", Scientif. World J., 2014, 616804. https://doi.org/10.1155/2014/616804
  2. Bahraminasab, M., Ghaffari, S. and Eslami-Shahed, H. (2017), "Al2O3-Ti functionally graded material prepared by spark plasma sintering for orthopaedic applications", J. Mech. Behav. Biomed. Mater., 72, 82-89. https://doi.org/10.1016/j.jmbbm.2017.04.024
  3. Bheemaneni, G., Saravana, S. and Kandaswamy, R. (2018), "Processing and characterization of poly (butylene adipate-co-terephthalate) / wollastonite biocomposites for medical applications", Materials Today: Proceedings, 5(1), 1807-1816. https://doi.org/10.1016/j.matpr.2017.11.279
  4. Claussen, N., Wu, S. and Holz, D. (1994), "Reaction bonding of aluminum oxide (RBAO) composites: processing, reaction mechanisms and properties", J. Eur. Ceram. Soc., 14(2), 97-109. https://doi.org/10.1016/0955-2219(94)90097-3
  5. Guzman, R., Fernandez-Garcia, E., Gutierrez-Gonzalez, C.F., Fernandez, Adolfo., Lopez-Lacomba, J. L. and Lopez-Esteban, S. (2016), "Biocompatibility assessment of spark plasma-sintered alumina-titanium cermets", J. Biomater. Applicat., 30(6), 759-769. https://doi.org/10.1177/0885328215584858
  6. Karacan, I., Ben-Nissan, B., Wang, H.A., Juritza, A., Swain, M.V., Muller, W.H., Chou, J., Stamboulis, A., Macha, I.J. and Taraschi, V. (2019), "Mechanical testing of antimicrobial biocomposite coating on metallic medical implants as drug delivery system", Mater. Sci. Eng. C, 104, 109757. https://doi.org/10.1016/j.msec.2019.109757
  7. Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T. and Yamamuro, T. (1990), "Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3", J. Biomed. Mater. Res., 24(6), 721-734. https://doi.org/10.1002/jbm.820240607
  8. Konopka, K. (2015), "Alumina composites with metal particles in ceramic matrix", Powder Metall. Metal Ceram., 54, 374-379. https://doi.org/10.1007/s11106-015-9724-5
  9. Maji, A. and Choubey, G. (2018), "Microstructure and mechanical properties of alumina toughened zirconia (ATZ)", Materials Today: Proceedings, 5(2), 7457-7465. https://doi.org/10.1016/j.matpr.2017.11.417
  10. Miyoshi, T., Sagawa, N. and Sassa, T. (1985), "Study on fracture toughness evaluation for structural ceramics", Transact. Japan Soc. Mech. Eng., 51, 2489-2497. https://doi.org/10.1299/kikaia.51.2489
  11. Quinn, J., McFadden, R., Chan, C.W. and Carson, L. (2020), "Titanium for orthopaedic applications: an overview of surface modification to improve biocompatibility and prevent bacterial biofilm formation", Science, 23(11), 101745. https://doi.org/10.1016/j.isci.2020.101745
  12. Rocha-Rangel, E., Lopez-Hernandez, J., Calles-Arriaga, C.A., Pech-Rodriguez, W.J., Armendariz-Mireles, E.N., Castillo-Robles, J.A. and Rodriguez-Garcia, J.A. (2019), "Effect of additions of metal sub-micron particles on properties of alumina matrix composites", J. Mater. Res., 34, 2983-2989. https://doi.org/10.1557/jmr.2019.178
  13. Saini, M., Singh, Y., Arora, P., Arora, V. and Jain, K. (2015), "Implant biomaterials: A comprehensive review", World J. Clinical Cases, 3(1), 52-57. https://doi.org/10.12998/wjcc.v3.i1.52
  14. Scharager-Lewin, D., Arrano-Scharager, D.P. and Biotti-Picand, J. (2016), "Biomateriales en levantamiento de seno maxilar para implantes dentales", Revista Clinica Periodoncia, Implantologia y Rehabilitacion Oral, 10(1), 20-25. https://doi.org/10.1016/j.piro.2016.06.002
  15. Wintermantel E., Mayer, J. and Goehring, T.N. (2001), "Composites for Biomedical Applications", Encyclopedia of Materials: Science and Technology, 1371-1376.
  16. Xifre-Perez, E., Ferre-Borull, J., Pallares, J. and Marsal, L.F. (2015), "Mesoporous alumina as a biomaterial for biomedical applications", Mesoporous Biomater., 2, 13-32. https://doi.org/10.1515/mesbi-2015-0004