DOI QR코드

DOI QR Code

Formulation of continuous element of prestressed stiffened circular cylindrical shell

  • Harbaoui, Imene (Laboratory of Applied Mechanics and Engineering LR-MAI, University Tunis El Manar) ;
  • Khadimallah, Mohamed Amine (Prince Sattam Bin Abdulaziz University, College of Engineering) ;
  • Benslimane, Abdelhakim (Laboratoire de Mecanique Materiaux et Energetique (L2ME), Faculte de Technologie, Universite de Bejaia) ;
  • Jin, Guoyong (College of Power and Energy Engineering, Harbin Engineering University) ;
  • Civalek, Omer (China Medial University)
  • Received : 2020.06.10
  • Accepted : 2021.10.25
  • Published : 2021.11.25

Abstract

This paper presents a dynamic analysis of a prestressed stiffened circular cylindrical shell subjected to external distributed pressure using the dynamic stiffness method. This approach is based on the first order shear deformation theory founded on love's first approximation theory. Natural frequencies are easily processed. The dynamic stiffness matrix has been built. The formulation of this element requires coupling pre-stressed shell and circumferential stiffener. The vibration analysis is performed with numerical examples to determine the performance of this model and the effect of presetress and stiffener on the frequency spectrum. The response of the system is determined with applied equivalent loads on element boundaries. Compared to the finite element method, the proposed element has many advantages such as the model size, the computing time, the accuracy and the higher precision.

Keywords

References

  1. Abdelhak, Z., Hadji, L., Daouadji, T. H. and Bedia, E.A.A. (2015), "Thermal buckling of functionally graded plates using a n-order four variable refined theory", Adv. Nano Res., 4(1), 031. https://doi.org/10.12989/amr.2015.4.4.031.
  2. Abualnour, M., Chikh, A., Hebali, H., Kaci, A., Tounsi, A., Bousahla, A.A. and Tounsi, A. (2019), "Thermomechanical analysis of antisymmetric laminated reinforced composite plates using a new four variable trigonometric refined plate theory", Comput. Concrete, 24(6), 489-498. https://doi.org/10.12989/cac.2019.24.6.489.
  3. Amin, M., Azhari, M. and Saadatpour, M.M. (2020),"Free vibration analysis sandwich FGM shells using isogeometric B-spline finite strip method", Steel Compos. Struct., 34, 361-376.: https://doi.org/10.12989/scs.2020.34.3.361.
  4. Attia, A., Bousahla, A.A., Tounsi, A., Mahmoud, S.R. and Alwabli, A.S. (2018), "A refined four variable plate theory for thermoelastic analysis of FGM plates resting on variable elastic foundations", Struct. Eng. Mech., 65(4), 453-464. https://doi.org/10.12989/sem.2018.65.4.453.
  5. Baruch, M. and Singer, J. (1963), "Effect of eccentricity of stiffeners on the general instability of stiffened cylindrical shells under hydrostatic pressure", J. Mech. Eng. Sci., 5(1), 23-27. https://doi.org/10.1243/JMES_JOUR_1963_005_005_02.
  6. Baruch, M. and Singer, J. (1965), "General instability of stiffened circular conical shells under hydrostatic pressure", The Aeronautical Quarterly, 16(2), 187-204. Also Technion Research and Development Foundation, Haifa, Israel, TAE Report 28, July 1963. https://doi.org/10.1017/s0001925900003401
  7. Baruch, M., Singer, J. and Harari, O. (1965), "General instability of conical shells with non-uniformly spaced stiffeners under hydrostatic pressure", Proc. 7th Israel Annual Conf. on Aviation and Astronautics, Israel Jnl Technol. 3, 62. Also Technion Research and Development Foundation, Haifa, Israel, TAE Report 37, December 1964.
  8. Bellal, M., Hebali, H., Heireche, H., Bousahla, A.A., Tounsi, A., Bourada, F., Mahmoud, S.R., Adda Bedia, E.A. and Tounsi, A. (2020), "Buckling behavior of a single-layered graphene sheet resting on viscoelastic medium via nonlocal four-unknown integral model", Steel Compos. Struct., 34, 643-655. https://doi.org/10.12989/scs.2020.34.5.643.
  9. Besseghier, A., Heireche, H., Bousahla, A.A., Tounsi, A. and Benzair, A. (2015). "Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix", Adv. Nano Res., 3(1), 029. https://doi.org/10.12989/anr.2015.3.1.029.
  10. Boscolo, M. and Banerjee, J.R. (2012), "Dynamic stiffness formulation for composite Mindlin plates for exact modal analysis of structures. Part I: Theory", Comput. Struct., 96-97, 61-73. https://doi.org/10.1016/j.compstruc.2012.01.002.
  11. Caddemi, S., Calio, I. and Cannizzaro, F. (2017), "The dynamic stiffness matrix (DSM) of axially loaded multi-cracked frames", Mech. Res. Commun., 84, 90-97. https://doi.org/10.1016/j.mechrescom.2017.06.012.
  12. Casimir, J.B., Nguyen, M.C. and Tawfiq, I. (2007), "Thick shells of revolution: Derivation of the dynamic stiffness matrix of continuous elements and application to a tested cylinder", Comput. Struct., 85(23-24), 1845-1857. https://doi.org/10.1016/j.compstruc.2007.03.002.
  13. Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289.
  14. Clough, R.W. and Penzien, J. (1975), Dynamics of structures. New-York: Mc Graw-Hill.
  15. Dastjerdi, S., Akgoz, B. and Civalek, O. (2020), "On the effect of viscoelasticity on behavior of gyroscopes", Int. J. Eng. Sci., 149, 103236. https://doi.org/10.1016/j.ijengsci.2020.103236.
  16. Fazzolari, F.A., Boscolo, M., Banerjee, J.R. (2013), "An exact dynamic stiffness element using a higher order shear deformation theory for free vibration analysis of composite plate assemblies", Compos. Struct., 96, 262-278. https://doi.org/10.1016/j.compstruct.2012.08.033.
  17. Harbaoui, I. Casimir, J.B. Khadimallah, M.A. and Chafra, M. (2018), "A new prestressed dynamic stiffness element for vibration analysis of thick circular cylindrical shells", Int. J. Mech. Sci., 140, 37-50. https://doi.org/10.1016/j.ijmecsci.2018.02.046.
  18. Hoprmann, W.H. (1958), "Some characteristics of the flexural vibrations of or-thogonally stiffened cylindrical shells", J. Acoust. Soc. Am., 30, 77-82. https://doi.org/10.1121/1.1909392.
  19. Kaddari, M., Kaci, A., Bousahla, A.A., Tounsi, A., Bourada, F., Tounsi, A., Adda Bedia, E.A., Mohammed, A. Al-Osta. (2020), "A study on the structural behaviour of functionally graded porous plates on elastic foundation using a new quasi-3D model: Bending and free vibration analysis", Comput. Concrete, 25(1), 37-57. https://doi.org/10.12989/cac.2020.25.1.037.
  20. Kim, T. and Lee, U. (2017), "Dynamic analysis of a multi-span beam subjected to a moving force using the frequency domain spectral element method", Comput. Struct., 19, 181-195. https://doi.org/10.1016/j.compstruc.2017.07.028.
  21. Lee, U. (2004), Spectral element method in structural dynamics. Inha University Press.
  22. Leung, A.Y.T. (1993), Dynamic stiffness and substructures. London: Springer.
  23. Liu, X. and Banerjee, J.R, (2017), "A spectral dynamic stiffness method for free vibration analysis of plane elastodynamic problems", Mech. Syst. Signal Pr., 87, 136-160. https://doi.org/10.1016/j.ymssp.2016.10.017.
  24. Loy, C.T. and Lam, K.Y. (1997), "Vibration of Cylindrical Shells with Ring Support", Int. J. Mech. Sci., 39(4), 455-471. https://doi.org/10.1016/S0020-7403(96)00035-5.
  25. Marjanovic, M., Kolarevic, N., Nefovska-Danilovic, M. and Petronijevic, M. (2017), "Shear deformable dynamic stiffness elements for a free vibration analysis of composite plate assemblies - Part II: Numerical examples", Compos. Struct., 159, 183-186. https://doi.org/10.1016/j.compstruct.2016.09.023.
  26. Moradi, S. and Mansouri, M.H. (2012), "Thermal buckling analysis of shear deformable laminated orthotopic plates by differential quadrature", Steel Compos. Struct., 12(2), 129-147. https://doi.org/10.12989/scs.2012.12.2.129.
  27. Najafizadeh, M. and Isvandzibaei, M. (2009), "Vibration of functionally graded cylindrical shells based on different shear deformation shell theories with ring support under various boundary conditions", J. Mech. Sci. Technol., 23, 2072-2084. https://doi.org/10.1007/s12206-009-0432-2
  28. Nefovska-Danilovic, M., Kolarevic, N., Marjanovic, M. and Petronijevic, M. (2017), "Shear deformable dynamic stiffness elements for a free vibration analysis of composite plate assemblies - Part I: Theory", Compos. Struct., 159, 728-744. https://doi.org/10.1016/j.compstruct.2016.09.022.
  29. Parthan, S. and Johns, D.J. (1971) TT7106 Department of Transport Technology, Loughborough University of Technology, Vol. I, IL Vibration and flutter of unstiffened and orthogonally stiffened circular cylindrical shells.
  30. Rosen, A. and Singer, J. (1974), "Vibrations of axially loaded stiffened cylindrical shells", J. Sound Vib., 34, 357-378. https://doi.org/10.1016/S0022-460X(74)80317-2.
  31. Shirmohammadi, F and Bahrami, S. (2018), "Dynamic response of circular and annular circular plates using spectral element method", Appl. Math. Model., 53, 156-166. https://doi.org/10.1016/j.apm.2017.08.014.
  32. Singer, J. Baruch, M. and Harari, O. (1967), "On the stability of eccentrically stiffened cylindrical shells under axial compression", Int. J. Solids Struct., 3(4), 445-470. https://doi.org/10.1016/0020-7683(67)90001-7.
  33. Singer, J., Baruch, M. and Harari, O. (1966), "Further remarks on the effect of eccen-tricity of stiffeners on the general instability of stiffened cylindrical shells", 1. mech. Engng. Sci., 8, 363. Also Technion Research and Development Foundation, Haifa, Israel, TAE Report 42, August 1965. https://doi.org/10.1243/JMES_JOUR_1966_008_048_02
  34. Su, H., Banerjee, J.R. and Cheung, C.W. (2013), "Dynamic stiffness formulation and free vibration analysis of functionally graded beams", Compos. Struct., 106, 854-862. https://doi.org/10.1016/j.compstruct.2013.06.029
  35. Thinh, T.I., Nguyen, M.C. and Ninh, D.G. (2014), "Dynamic stiffness formulation for vibration analysis of thick composite plates resting on non-homogenous foundations", Compos. Struct., 108, 684-695. https://doi.org/10.1016/j.compstruct.2013.10.022.
  36. Tounsi, A., Benguediab, S., Semmah, A. and Zidour, M. (2013). "Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes", Adv. Nano. Res., 1(1), 1. https://doi.org/10.12989/anr.2013.1.1.001
  37. Tounsi, D. Casimir, J.B. and Haddar, M. (2012), "Dynamic stiffness formulation for circular rings", Comput. Struct., 112, 258-265. https://doi.org/10.1016/j.compstruc.2012.08.005.
  38. Tounsi, D., Casimir, J.B., Abid, A., Tawfiq, I. and Haddar, M. (2014), "Dynamic stiffness formulation and response analysis of stiffened shells", Comput. Struct., 132, 75-83. https://doi.org/10.1016/j.compstruc.2013.11.003.
  39. Yazid, M., Heireche, H., Tounsi, A., Bousahla, A.A. and Houari, M.S.A. (2018), "A novel nonlocal refined plate theory for stability response of orthotropic single-layer graphene sheet resting on elastic medium", Smart Struct. Syst., 21(1), 15-25. https://doi.org/10.12989/sss.2018.21.1.015.
  40. Youcef, D.O., Kaci, A., Benzair, A., Bousahla, A.A. and Tounsi, A. (2018), "Dynamic analysis of nanoscale beams including surface stress effects", Smart Struct. Syst., 21(1), 65-74. https://doi.org/10.12989/sss.2018.21.1.065.
  41. Zula, T., Kravanja, S. and Klansek, U. (2016), "MINLP optimization of a composite I beam floor system", Steel Compos. Struct., 22(5), 1163-1192. https://doi.org/10.12989/scs.2016.22.5.1163.