참고문헌
- Abdelrahman, A.A., Abd-El-Mottaleb H.E. and Eltaher, M.A. (2020b), "On bending of perforated beams incorporating the microstructure effect", Struct. Eng. Mech., 76(6), 765-779. https://doi.org/10.12989/sem.2020.76.6.765.
- Abdelrahman, A.A., Eltaher, M.A., Kabeel, A.M., Abdraboh, A.M. and Hendy, A.A. (2019), "Free and forced analysis of perforated beams", Steel Compos. Struct., 31(5), 489-502. https://doi.org/10.12989/scs.2019.31.5.489.
- Abdelrahman, A.A., Mohamed, N.A. and Eltaher, M.A. (2020a), "Static bending of perforated nanobeams including surface energy and microstructure effects", Eng. with Comput., 1-21. https://doi.org/10.1007/s00366-020-01149-x.
- Aksencer, T. and Aydogdu, M. (2019), "Vibration of a rotating composite beam clamped-off the axis of rotation", Compos. Struct., 225, 111174. https://doi.org/10.1016/j.compstruct.2019.111174.
- Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2019), "On forced and free vibrations of cutout squared beams", Steel Compos. Struct., 32(5), 643-655. https://doi.org/10.12989/scs.2019.32.5.643.
- Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2020a), "Influence of the perforation configuration on dynamic behaviors of multilayered beam structure", Structure, 28, 1413-1426. https://doi.org/10.1016/j.istruc.2020.09.055.
- Almitani, K.H., Abdelrahman, A.A. and Eltaher, M.A. (2020b), "Stability of perforated nanobeams incorporating surface energy effects", Steel Compos. Struct., 35(4), 555-566. https://doi.org/10.12989/scs.2020.35.4.555.
- Arab, S.B., Rodrigues, J.D., Bouaziz, S. and Haddar, M. (2017), "A finite element based on equivalent single layer theory for rotating composite shafts dynamic analysis", Compos. Struct., 178, 135-144. https://doi.org/10.1016/j.compstruct.2017.06.052.
- Azimi, M., Mirjavadi, S.S., Shafiei, N., Hamouda, A.M.S. and Davari, E. (2018), "Vibration of rotating functionally graded Timoshenko nano-beams with nonlinear thermal distribution", Mech. Adv. Mater. Struct., 25(6), 467-480. https://doi.org/10.1080/15376494.2017.1285455.
- Berkani, A. (2018), "Stabilization of a viscoelastic rotating Euler-Bernoulli beam", Math. Method. Appl. Sci., 41(8), 2939-2960.https://doi.org/10.1002/mma.4793.
- Bhat, R.A. and Gupta, L.M. (2020), "Moment-gradient factor for perforated cellular steel beams under lateral torsional buckling", Arabian J. Sci. Eng., 1-17. https://doi.org/10.1007/s13369-020-04836-5.
- Boumediene, F., Bekhoucha, F. and Daya, E.M. (2019), "Modal analysis of rotating viscoelastic sandwich beams", Mech. Adv. Mater. Struct., 1-13. https://doi.org/10.1080/15376494.2019.1567887.
- Bourouina, H., Yahiaoui, R., Kerid, R., Ghoumid, K., Lajoie, I., Picaud, F. and Herlem, G. (2020), "The influence of hole networks on the adsorption-induced frequency shift of a perforated nanobeam using non-local elasticity theory", J. Phys. Chem. Solids, 136, 109201. https://doi.org/10.1016/j.jpcs.2019.109201.
- Bucalem, M.L. and Bathe, K.J. (2011), "The Mechanics of Solids and Structures-Hierarchical Modeling and The Finite Element Solution", Springer Science & Business Media, Cambridge, MA, USA.
- Carnegie, W. (1959), "Vibrations of rotating cantilever blading: theoretical approaches to the frequency problem based on energy methods", J. Mech. Eng. Sci., 1(3), 235-240. https://doi.org/10.1243/JMES_JOUR_1959_001_028_02.
- Chen, Q. and Du, J. (2019), "A Fourier series solution for the transverse vibration of rotating beams with elastic boundary supports", Appl. Acoust., 155, 1-15. https://doi.org/10.1016/j.apacoust.2019.05.008.
- Chen, S. and Ren, F. (2017), "Vibration analysis of horizontal rotating beam in pipe", Int. J. Hydrogen Energy, 42(29), 18741-18746. https://doi.org/10.1016/j.ijhydene.2017.04.174.
- Chen, Z. and Qian, L. (2020), "Nonlinear dynamic characteristics analysis of planar flexible rotating beams with clearance joint", J. Braz. Soc. Mech. Sci. Eng., 42(333), 333. https://doi.org/10.1007/s40430-020-02388-1.
- Cheng, J., Xu, H. and Yan, A. (2006), "Frequency analysis of a rotating cantilever beam using assumed mode method with coupling effect", Mech. Based Des. Struct., 34(1), 25-47. https://doi.org/10.1080/15367730500501587.
- Chung, J. and Yoo, H.H. (2002), "Dynamic analysis of a rotating cantilever beam by using the finite element method", J. Sound Vib., 249(1), 147-164. https://doi.org/10.1006/jsvi.2001.3856.
- Chung, K.F. and Wang, A.J. (2004), "Verification to design of perforated composite beams using finite element method'. In Proc. Int. Conf. Steel and Composite Structures, Seoul, Korea September.
- Degtyarev, V.V. (2020), "Flexural strength of steel decks with square and rectangular holes: Numerical studies", J. Constr. Steel Res., 172, 106241. https://doi.org/10.1016/j.jcsr.2020.106241.
- Ebrahimi, F. and Haghi, P. (2018a), "Wave dispersion analysis of rotating heterogeneous nanobeams in thermal environment", Adv. Nano Res., 6(1), 21. https://doi.org/10.12989/anr.2018.6.1.021.
- Ebrahimi, F. and Haghi, P. (2018b), "Elastic wave dispersion modelling within rotating functionally graded nanobeams in thermal environment", Adv. Nano Res., 6(3), 201-217. https://doi.org/10.12989/anr.2018.6.3.201.
- Eltaher, M.A. and Abdelrahman, A.A. (2020), "Bending behavior of squared cutout nanobeams incorporating surface stress effects", Steel Compos.Struct., 36(2), 143-161. https://doi.org/10.12989/scs.2020.36.2.143.
- Eltaher, M.A. and Mohamed, N.A. (2020), "Vibration of nonlocal perforated nanobeams with general boundary conditions", Smart Struct. Syst., 25(4), 501-514. https://doi.org/10.12989/sss.2020.25.4.501.
- Eltaher, M.A., Abdraboh, A.M. and Almitani, K.H. (2018), "Resonance frequencies of size dependent perforated nonlocal nanobeam", Microsyst. Technol., 24(9), 3925-3937. https://doi.org/10.1007/s00542-018-3910-6.
- Eltaher, M.A., Omar, F.A., Abdalla, W.S., Kabeel, A.M. and Alshorbagy, A.E. (2020a), "Mechanical analysis of cutout piezoelectric nonlocal nanobeam including surface energy effects", Struct. Eng. Mech., 76(1), 141-151. https://doi.org/10.12989/sem.2020.76.1.141.
- Eltaher, M.A., Omar, F.A., Abdraboh, A.M., Abdalla, W.S. and Alshorbagy, A.E. (2020b), "Mechanical behaviors of piezoelectric nonlocal nanobeam with cutouts", Smart Struct. Syst., 25(2), 219-228. https://doi.org/10.12989/sss.2020.25.2.219.
- Erfani, S. and Akrami, V. (2019), "A Nonlinear macro-model for numerical simulation of perforated steel beams", Int. J. Steel Struct., 19(5), 1605-1623. https://doi.org/10.1007/s13296-019-00239-x.
- Esen (2019), "Dynamic response of functional graded Timoshenko beams in a thermal environment subjected to an accelerating load", Eur. J. Mech. - A/Solids, 78, 103841. https://doi.org/10.1016/j.euromechsol.2019.103841.
- Esen, I. (2018), "Finite element formulation and analysis of a functionally graded Timoshenko beam subjected to an accelerating mass including inertial effects of the mass", Latin Am. J. Solids Struct., 15(10). https://doi.org/10.1590/1679-78255102.
- Esen, I. (2020a), "Dynamics of size-dependant Timoshenko micro beams subjected to moving loads", Int. J. Mech. Sci., 175, 105501. https://doi.org/10.1016/j.ijmecsci.2020.105501.
- Esen, I. (2020b), "Response of a micro-capillary system exposed to a moving mass in magnetic field using nonlocal strain gradient theory", International Journal of Mechanical Sciences, 188, 105937. https://doi.org/10.1016/j.ijmecsci.2020.105937
- Fallahi, B. (2003), "Integration of dynamic equation of a rotating Timoshenko beam via Chebyshev polynomials", Int. J. Model. Simul., 23(3), 172-178. https://doi.org/10.1080/02286203.2003.11442269.
- Fan, W., Zhu, W.D. and Zhu, H. (2019), "Dynamic analysis of a rotating planar Timoshenko beam using an accurate global spatial discretization method", J. Sound Vib., 457, 261-279. https://doi.org/10.1016/j.jsv.2019.05.003.
- Fang, J., Zhou, D. and Dong, Y. (2018), "Three-dimensional vibration of rotating functionally graded beams", J. Vib. Control, 24(15), 3292-3306. https://doi.org/10.1177/1077546317703867.
- Feng, R., Zhan, H., Meng, S. and Zhu, J. (2018), "Experiments on H-shaped high-strength steel beams with perforated web", Eng. Struct., 177, 374-394. https://doi.org/10.1016/j.engstruct.2018.08.059.
- Feyzollahzadeh, M. and Bamdad, M. (2019), "Vibration analysis of rotating beam with variable cross section using Riccati transfer matrix method", Struct. Eng. Mech.,70(2), 199-207. https://doi.org/10.12989/sem.2019.70.2.199.
- Ghadiri, M. and Shafiei, N. (2016), "Vibration analysis of rotating functionally graded Timoshenko microbeam based on modified couple stress theory under different temperature distributions", Acta Astronautica, 121, 221-240. https://doi.org/10.1016/j.actaastro.2016.01.003.
- Gohar, S., Afefy, H. M., Kassem, N.M. and Taher, S.E.D.F. (2017), "Flexural performance of self-compacted perforated concrete beams under repeated loading", Eng. Struct., 143, 441-454. https://doi.org/10.1016/j.engstruct.2017.04.031.
- Guha, K., Kumar, M., Agarwal, S. and Baishya, S. (2015), "A modified capacitance model of RF MEMS shunt switch incorporating fringing field effects of perforated beam", Solid-State Electron., 114, 35-42. https://doi.org/10.1016/j.sse.2015.07.008.
- Gunda, J.B. and Ganguli, R. (2008), "New rational interpolation functions for finite element analysis of rotating beams", Int. J. Mech. Sci., 50(3), 578-588. https://doi.org/10.1016/j.ijmecsci.2007.07.014.
- Guo, Y., Li, L. and Zhang, D. (2019), "Dynamic modeling and vibration analysis of rotating beams with active constrained layer damping treatment in temperature field", Compos. Struct., 226, 111217. https://doi.org/10.1016/j.compstruct.2019.111217.
- Han, H., Liu, L. and Cao, D. (2020), "Dynamic modeling for rotating composite Timoshenko beam and analysis on its bending-torsion coupled vibration", Appl. Math. Model., 78, 773-791. https://doi.org/10.1016/j.apm.2019.09.056.
- https://doi.org/10.1016/B978-008044017-0/50013-5
- https://doi.org/10.1016/j.ijmecsci.2020.105937
- https://doi.org/10.1016/j.tws.2020.107407
- Hu, Y., Zhao, Y., Wang, N. and Chen, X. (2020), "Dynamic analysis of varying speed rotating pretwisted structures using refined beam theories", Int. J. Solids. Struct., 185, 292-310. https://doi.org/10.1016/j.ijsolstr.2019.08.008.
- Huang, Y.M. and Yang, M.L. (2009), "Dynamic analysis of a rotating beam subjected to repeating axial and transverse forces for simulating a lathing process", Int. J. Mech. Sci., 51(3), 256-268. https://doi.org/10.1016/j.ijmecsci.2008.12.005.
- Huo, Y. and Wang, Z. (2016), "Dynamic analysis of a rotating double-tapered cantilever Timoshenko beam", Arch. Appl. Mech., 86(6), 1147-1161. https://doi.org/10.1007/s00419-015-1084-6.
- Jeong, K.H. and Amabili, M. (2006), "Bending vibration of perforated beams in contact with a liquid", J. Sound Vib., 298(1-2), 404-419. https://doi.org/10.1016/j.jsv.2006.05.029.
- Kim, H. and Chung, J. (2016), "Nonlinear modeling for dynamic analysis of a rotating cantilever beam", Nonlinear Dynam., 86(3), 1981-2002. https://doi.org/10.1007/s11071-016-3009-5.
- Kim, H., Yoo, H.H. and Chung, J. (2013), "Dynamic model for free vibration and response analysis of rotating beams", J. Sound Vib., 332(22), 5917-5928. https://doi.org/10.1016/j.jsv.2013.06.004.
- Ko, C.H. and Chung, K.F. (2002), "A review of recent developments on design of perforated beams", Adv. Steel Struct., (ICASS'02), 121-128.
- Li, L., Liao, W. H., Zhang, D. and Guo, Y. (2019), "Dynamic modeling and analysis of rotating beams with partially covered enhanced active constrained layer damping treatment", J. Sound Vibr., 455, 46-68. https://doi.org/10.1016/j.jsv.2019.04.026.
- Li, L., Wu, J.Q., Zhu, W.D., Wang, L., Jing, L.W., Miao, G.H. and Li, Y.H. (2020), "A nonlinear dynamical model for rotating composite thin-walled beams subjected to hygrothermal effects", Compos. Struct., 112839. https://doi.org/10.1016/j.compstruct.2020.112839.
- Li, Y. and Li, M. (2020), "Dynamic analysis of rotating double-tapered cantilever Timoshenko nano-beam using the nonlocal strain gradient theory", Math. Method. Appl. Sci., 43(15), 9206-9222. https://doi.org/10.1002/mma.6616.
- Lin, B.C., Xie, T.F., Xu, M., Li, Y.H. and Yang, J. (2019), "Natural frequencies and dynamic responses of rotating composite nonuniform beams with an elastically root in hygrothermal environment", Compos. Struct., 209, 968-980. https://doi.org/10.1016/j.compstruct.2018.11.029.
- Luschi, L. and Pieri, F. (2012), "A simple analytical model for the resonance frequency of perforated beams", Procedia Eng., 47, 1093-1096. https://doi.org/10.1016/j.proeng.2012.09.341.
- Ma'en, S.S. and Butcher, E.A. (2012), "Free vibration analysis of non-rotating and rotating Timoshenko beams with damaged boundaries using the Chebyshev collocation method", Int. J. Mech. Sci., 60(1), 1-11. https://doi.org/10.1016/j.ijmecsci.2012.03.008.
- Malik, M. and Das, D. (2020), "Free vibration analysis of rotating nano-beams for flap-wise, chord-wise and axial modes based on Eringen's nonlocal theory", Int. J. Mech. Sci., 105655. https://doi.org/10.1016/j.ijmecsci.2020.105655.
- Mohammadnejad, M. and Saffari, H. (2019), "Flapwise and non-local bending vibration of the rotating beams", Struct. Eng. Mech., 72(2), 229-244. https://doi.org/10.12989/sem.2019.72.2.229.
- Nadia, B., Martina, B., Bernuzzi, C. and Simoncelli, M. (2020), "Perforated TWCF steel beam-columns: European design alternatives", Steel Compos. Struct., 35(5), 701-715. http://doi.org/10.12989/scs.2020.35.5.701.
- Nawar, M.T., Arafa, I.T. and Elhosseiny, O. (2020), "Numerical investigation on effective spans ranges of perforated steel beams", Structures, 25, 398-410. https://doi.org/10.1016/j.istruc.2020.03.026.
- Nikolic, A. and Salinic, S. (2017), "Dynamics of the rotating cantilever beam", In IX International Conference "Heavy Machinery-HM. Zlatibor, 28 June - 1 July 2.
- Oh, Y. and Yoo, H.H. (2016), "Vibration analysis of rotating cantilever beams orienting inward", J. Mech. Sci. Technol., 30(9), 4177-4184. https://doi.org/10.1007/s12206-016-0829-7.
- Ondra, V. and Titurus, B. (2019), "Free vibration analysis of a rotating pre-twisted beam subjected to tendon-induced axial loading", J. Sound Vib., 461, 114912. https://doi.org/10.1016/j.jsv.2019.114912.
- Ozarpa, C. and Esen, I (2020), "Modelling the dynamics of a nanocapillary system with a moving mass using the non-local strain gradient theory", Math. Method. Appl. Sci., https://doi.org/10.1002/mma.6812.
- Rao, S.S. (2007), "Vibration of Continuous Systems", (Vol. 464), Wiley & Sons, Inc, New York.
- Ryigit, E., Zor, M. and Arman, Y. (2009), "Hole effects on lateral buckling of laminated cantilever beams", Compos. Part B: Engineering, 40(2), 174-179. https://doi.org/10.1016/j.compositesb.2008.07.005.
- She, G.L., Liu, H.B. and Karami, B. (2021), "Resonance analysis of composite curved microbeams reinforced with graphene nanoplatelets", Thin-Walled Structures, 160, 107407. https://doi.org/10.1016/j.tws.2020.107407
- Sivakumar, N., Kanagasabapathy, H. and Srikanth, H. P. (2018), "Analysis of Perforated Piezoelectric Sandwich Smart Structure Cantilever Beam Using COMSOL", Mater. Today: Proceedings, 5(5), 12025-12034. https://doi.org/10.1016/j.matpr.2018.02.177.
- Theocaris, P.S. (1988), "A simple solution for a perforated beam in bending and traction", Acta mechanica, 71(1-4), 21-38. https://doi.org/10.1007/BF01173935
- Tsavdaridis, K. D. and D'Mello, C. (2011), "FE Modelling Techniques for Web-Post Buckling Response", Proceedings of the 6th European Conference on Steel and Composite Structures, Budapest, Hungary, August.
- Tsavdaridis, K.D. and D Mello, C. (2009), "Finite element investigation of perforated steel beams with different web opening configurations", Proceedings of the 6th ICASS'09/IJSSD, International Conference on Advances in Steel Structures and Progress in Structural Stability and Dynamics, Hong Kong, China, 16-18 December.
- Tsavdaridis, K.D. and D'Mello, C. (2012), "Optimisation of novel elliptically-based web opening shapes of perforated steel beams", J. Constr. Steel Res., 76, 39-53. https://doi.org/10.1016/j.jcsr.2012.03.026.
- Tsavdaridis, K.D., D'Mello, C. and Huo, B.Y. (2013), "Experimental and computational study of the vertical shear behaviour of partially encased perforated steel beams", Eng. Struct., 56, 805-822. https://doi.org/10.1016/j.engstruct.2013.04.025.
- Tsavdaridis, K.D., Faghih, F. and Nikitas, N. (2014), "Assessment of perforated steel beam-to-column connections subjected to cyclic loading", J. Earthq. Eng., 18(8), 1302-1325. https://doi.org/10.1080/13632469.2014.935834.
- Tsavdaridis, K.D., Kingman, J.J. and Toropov, V.V. (2015), "Application of structural topology optimisation to perforated steel beams", Computers & structures, 158, 108-123. https://doi.org/10.1016/j.compstruc.2015.05.004.
- Wang, A.J. and Chung, K.F. (2008), "Advanced finite element modelling of perforated composite beams with flexible shear connectors", Eng. Struct., 30(10), 2724-2738. https://doi.org/10.1016/j.engstruct.2008.03.001.
- Wozniak, J. and Firkowski, M. (2019), "Optimal decay ratio of damped slowly rotating Timoshenko beams", ZAMM-J. Appl. Math. Mech., 99(10), e201800222. https://doi.org/10.1002/zamm.201800222.
- Yachin, V.V. and Zinenko, T.L. (2016), "3-D Gaussian beam scattering from a gyromagnetic perforated layer: Quasi-static approach", Opt. Commun., 380, 425-433. https://doi.org/10.1016/j.optcom.2016.06.032.
- Yang, J.L. and Yu, T.X. (2001), "Dynamic plastic behavior of a free-rotating hinged beam striking a cantilever beam", Mech. Struct. Mach., 29(3), 391-409. https://doi.org/10.1081/SME100105657.
- Yang, X., Wang, S., Zhang, W., Qin, Z. and Yang, T. (2017), "Dynamic analysis of a rotating tapered cantilever Timoshenko beam based on the power series method", Appl. Math. Mech., 38(10), 1425-1438. https://doi.org/10.1007/s10483-017-2249-6.
- Yang, X.D., Wang, S. W., Zhang, W., Yang, T.Z. and Lim, C.W. (2018), "Model formulation and modal analysis of a rotating elastic uniform Timoshenko beam with setting angle", Eur. J. Mech. -A/Solids, 72, 209-222. https://doi.org/10.1016/j.euromechsol.2018.05.014.
- Yu, Y.S. and Liu, X.Y. (2020), "Finite element analyses on energy dissipation capacity of upper flange welded-lower flange bolted beam-column connection with slotted holes", J. Asian Architect. Build. Eng., 1-12. https://doi.org/10.1080/13467581.2020.1749639.
- Zaher, O.F., Yossef, N.M., El-Boghdadi, M.H. and Dabaon, M.A. (2018), "Structural behaviour of arched steel beams with cellular openings", J. Constr. Steel Res., 148, 756-767. https://doi.org/10.1016/j.jcsr.2018.06.029.
- Zeng, J., Zhao, C., Ma, H. and Wen, B. (2020), "Dynamic modeling and coupling characteristics of rotating inclined beams with twisted-shape sections", Front. Mech. Eng., 15(3): 374-389. https://doi.org/10.1007/s11465-019-0580-8.
- Zhao, C., Zeng, J., Ma, H., Ni, K. and Wen, B. (2020), "Dynamic Analysis of Cracked Rotating Blade Using Cracked Beam Element", Results in Phys., 19, 103360. https://doi.org/10.1016/j.rinp.2020.103360.