References
- Abdelrahman, W.G. (2020), "Effect of material transverse distribution profile on buckling of thick functionally graded material plates according to TSDT", Struct. Eng. Mech., 74(1), 83-90. https://doi.org/10.12989/sem.2020.74.1.083.
- Abdulrazzaq, M.A. Fenjan, R.M Ahmed, R.A. and Faleh, N.M. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Compos. Struct., 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147.
- Ahmed, R.A., Fenjan, R.M. and Faleh, N.M. (2019), "Analyzing post-buckling behavior of continuously graded FG nanobeams with geometrical imperfections", Geomech. Eng., 17(2), 175-180. https://doi.org/10.12989/gae.2019.17.2.175.
- Ahmed, R.A., Moustafa, N.M., Faleh, N.M. and Fenjan, R.M. (2020), "Nonlocal nonlinear stability of higher-order porous beams via Chebyshev-Ritz method", Struct. Eng. Mech., 76(3), 413-420. https://doi.org/10.12989/sem.2020.76.3.413.
- Akavci, S.S. and Tanrikulu, A.H. (2015), "Static and free vibration analysis of functionally graded plates based on a new quasi-3D and 2D shear deformation theories", Compos. Part B, 83, 203-215. https://doi.org/10.1016/j.compositesb.2015.08.043.
- Akbas, S.D. (2015), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447. https://doi.org/10.12989/scs.2015.19.6.1421.
- Akbas, S.D., Fageehi, Y.A., Assie, A.E. and Eltaher, M.A. (2020), "Dynamic analysis of viscoelastic functionally graded porous thick beams under pulse load", Eng. with Comput., https://doi.org/10.1007/s00366-020-01070-3.
- Akgoz, B. and Civalek, O. (2013), "Buckling analysis of functionally graded microbeams based on the strain gradient theory", Acta Mechanica, 224(9), 2185-2201. https://doi.org/10.1007/s00707-013-0883-5.
- Akgun, G. and Kurtaran, H. (2019), "Large displacement transient analysis of FGM super-elliptic shells using GDQ method", Thin-Wall. Struct., 141, 133-152. https://doi.org/1010.1016/j.tws.2019.03.049.
- Alijani, F. and Amabili, M. (2014), "Effect of thickness deformation on large-amplitude vibrations of functionally graded rectangular plates", Compos. Struct., 113, 89-107. https://doi.org/10.1016/j.compstruct.2014.03.006.
- Asiri, S.A., Akbas, S.D. and Eltaher, M.A. (2020), "Damped dynamic responses of a layered functionally graded thick beam under a pulse load", Struct. Eng. Mech., 75(6), 713-722. https://doi.org/10.12989/sem.2020.75.6.713.
- Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Sci., 115, 73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011.
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
- Bharath, H.S., Waddar, S., Bekinal, S.I., Jeyaraj, P. and Doddamani, M. (2020), "Effect of axial compression on dynamic response of concurrently printed sandwich", Compos. Struct., 113223. https://doi.org/10.1016/j.compstruct.2020.113223.
- Bouazza, M., Antar, K., Amara, K., Benyoucef, S. and Adda Bedia, E.A. (2019), "Influence of temperature on the beams behavior strengthened by bonded composite plates",Geomech. Eng., 18(5), 555-566. https://doi.org/10.12989/gae.2019.18.5.555.
- Bouiadjra, R.B., Bachiri, A., Benyoucef, S., Fahsi, B. and Bernard, F. (2020), "An investigation of the thermodynamic effect on the response of FG beam on elastic foundation", Struct. Eng. Mech., 76(1), 115-127. https://doi.org/10.12989/sem.2020.76.1.115.
- Carrera, E., Brischetto, S., Cinefra, M. and Soave, M. (2011), "Effects of thickness stretching in functionally graded plates and shells", Compos. Part B, 42(2), 123-133. https://doi.org/10.1016/j.compositesb.2010.10.005.
- Civalek, O., Dastjerdi, S., Akbas, S.D. and Akgoz, B. (2021), "Vibration analysis of carbon nanotube-reinforced composite microbeams", Math. Method. Appl. Sci., Special issue, https://doi.org/10.1002/mma.7069.
- Cuong-Le, T., Nguyen, K.D., Nguyen-Trong, N., Khatir, S., Nguyen-Xuan, H, and Abdel-Wahab, M. (2020), "A three-dimensional solution for free vibration and buckling of annular plate, conical, cylinder and cylindrical shell of FG porous-cellular materials using IGA", Compos. Struct., 113216. https://doi.org/10.1016/j.compstruct.2020.113216.
- Daouadji, T.H. and Hadji, L. (2015), "Analytical solution of nonlinear cylindrical bending for functionally graded plates", Geomech. Eng., 9(5), 631-644. https://doi.org/10.12989/gae.2015.9.5.631.
- Dehshahri, K., Nejad, M.Z., Ziaee, S., Niknejad, A. and Hadi, A. (2020), "Free vibrations analysis of arbitrary three-dimensionally FGM nanoplates", Adv. Nano Res., 8(2), 115-134. https://doi.org/10.12989/anr.2020.8.2.115.
- Demir, C. and Civalek, O. (2017), "On the analysis of microbeams", Int. J. Eng. Sci., 121, 14-33. https://doi.org/10.1016/j.ijengsci.2017.08.016.
- Eldeeb, A.M., Shabana, Y. M. and Elsawaf, A. (2020a), "Influences of angular deceleration on the thermoelastoplastic behaviors of nonuniform thickness multilayer FGM discs", Compos. Struct., 113092. https://doi.org/10.1016/j.compstruct.2020.113092.
- Eldeeb, A., Shabana, Y. and Elsawaf, A. (2020b), "Thermo-elastoplastic behavior of a rotating sandwich disc made of temperature-dependent functionally graded materials", J. Sandw. Struct. Mater., 109963622090497. https://doi.org/10.1177/1099636220904970.
- Ellali, M., Amara, K., Bouazza, M. and Bourada, F. (2018), "The buckling of piezoelectric plates on Pasternak elastic foundation using higher-order shear deformation plate theories", Smart Struct. Syst., 21(1), 113-122. https://doi.org/10.12989/sss.2018.21.1.113.
- Farzam-Rad, S.A., Hassani, B. and Karamodin, A. (2017), "Isogeometric analysis of functionally graded plates using a new quasi-3D shear deformation theory based on physical neutral surface", Compos. Part B, Eng., 108, 174-189. https://doi.org/10.1016/j.compositesb.2016.09.029.
- Fenjan, R.M., Faleh, N.M. and Ahmed, R.A. (2020b), "Geometrical imperfection and thermal effects on nonlinear stability of microbeams made of graphene-reinforced nano-composites", Adv. Nano Res., 9(3). 147-156.: https://doi.org/10.12989/anr.2020.9.3.147.
- Fenjan, R.M., Faleh, N.M., and Ahmed R.A. (2020c), "Strain gradient based static stability analysis of composite crystalline shell structures having porosities", Steel and Composite Structures, 36(6), 631-642. http://dx.doi.org/10.12989/scs.2020.36.6.631.
- Fenjan, R.M., Moustafa, N.M. and Faleh, N.M. (2020a), "Scale-dependent thermal vibration analysis of FG beams having porosities based on DQM", Adv. Nano Res., 8(4), 283-292. https://doi.org/10.12989/anr.2020.8.4.283.
- Hadji, L. (2020), "Influence of the distribution shape of porosity on the bending of FGM beam using a new higher order shear deformation model", Smart Struct. Syst., 26(2), 253-262. https://doi.org/10.12989/sss.2020.26.2.253.
- Hosseini-Hashemi, S.H., Fadaee, M. and Atashipour, S.R. (2011), "Study on the free vibration of thick functionally graded rectangular plates according to a new exact closed form procedure", Compos. Struct., 93(2), 722-735. https://doi.org/10.1016/j.compstruct.2010.08.007.
- Jalaei, M.H. and Civalek, O. (2019), "On dynamic instability of magnetically embedded viscoelastic porous FG nanobeam", Int. J. Eng. Sci., 143, 14-32. https://doi.org/10.1016/j.ijengsci.2019.06.013.
- Jha, D.K., Kant, T. and Singh, R.K. (2013), "Free vibration response of functionally graded thick plates with shear and normal deformations effects", Compos. Struct., 96, 799-823. https://doi.org/10.1016/j.compstruct.2012.09.034.
- Karami, B. and Janghorban, M. (2019), "A new size-dependent shear deformation theory for free vibration analysis of functionally graded/anisotropic nanobeams", Thin-Wall. Struct., 143, 106227. https://doi.org/10.1016/j.tws.2019.106227.
- Karsh, P.K., Mukhopadhyay, T. and Dey, S. (2018), "Stochastic dynamic analysis of twisted functionally graded plates", Compos. Part B: Eng., 147, 259-278. https://doi.org/10.1016/j.compositesb.2018.03.043.
- Karsh, P.K., Mukhopadhyay, T., Chakraborty, S., Naskar, S. and Dey, S. (2019), "A hybrid stochastic sensitivity analysis for low-frequency vibration and low-velocity impact of functionally graded plates", Compos. Part B: Eng., 107221. https://doi.org/10.1016/j.compositesb.2019.107221.
- Khalaf, B.K., Fenjan, RM. and Faleh, N.M. (2019), "Analyzing nonlinear mechanical-thermal buckling of imperfect micro-scale beam made of graded graphene reinforced composites", Adv. Mater. Res., 8(3). 219-235. https://doi.org/10.12989/amr.2019.8.3.219.
- Kiani, Y. (2019), "NURBS-based thermal buckling analysis of graphene platelet reinforced composite laminated skew plates", J. Therm. Stresses, 1-19. https://doi.org/10.1080/01495739.2019.1673687.
- Liu, W., Liu, S., Fan, M., Tian, W., Wang, J. and Tahouneh, V. (2020), "Influence of internal pores and graphene platelets on vibration of non-uniform functionally graded columns", Steel Compos. Struct., 35(2), 295-303. https://doi.org/10.12989/scs.2020.35.2.295.
- Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
- Mantari, J.L. and Soares, C.G. (2013), "A novel higher-order shear deformation theory with stretching effect for functionally graded plates", Compos. Part B, 45(1), 268-281. https://doi.org/10.1016/j.compositesb.2012.05.036.
- Matsunaga, H. (2008), "Free vibration and stability of functionally graded plates according to a 2-D higher-order deformation theory", Compos. Struct., 82, 499-512. https://doi.org/10.1016/j.compstruct.2007.01.030.
- Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181-190. https://doi.org/10.12989/anr.2019.7.3.181.
- Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", Eur. J, Mech, - A/Solids, 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005.
- Merzoug, M., Bourada, M., Sekkal, M., Ali Chaibdra, A., Belmokhtar, C., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361.
- Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Roque, C.M.C., Cinefra, M., Jorge, R.M.N. and Soares, C.M.M. (2012), "A quasi-3D sinusoidal shear deformation theory for the static and free vibration analysis of functionally graded plates", Compos. Part B, 43, 711-725.https://doi.org/10.1016/j.compositesb.2011.08.009.
- Noroozi, R., Barati, A., Kazemi, A., Norouzi, S. and Hadi, A. (2020), "Torsional vibration analysis of bi-directional FG nano-cone with arbitrary cross-section based on nonlocal strain gradient elasticity", Adv. Nano Res., 8(1), 13-24. https://doi.org/10.12989/anr.2020.8.1.013.
- Peng, L., Ni, Z. and Huang, X. (2013), "Review on the fire safety of exterior wall claddings in high-rise buildings in China", Procedia Eng., 62, 663-670. https://doi.org/10.1016/j.proeng.2013.08.112.
- Pham, Q.H., Pham, D.T., Trinh, Q.V. and Phan, D.H. (2020), "Geometrically nonlinear analysis of functionally graded shells using an edge-based smoothed MITC3 (ES-MITC3) fnite elements", Eng. with Computers., 36, 1069-1082. https://doi.org/10.1007/s00366-019-00750-z.
- Rachedi, M.A., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. https://doi.org/10.12989/gae.2020.22.1.065.
- Saadatfar, M. and Zarandi, M.H. (2020), "Effect of angular acceleration on the mechanical behavior of an exponentially graded piezoelectric rotating annular plate with variable thickness", Mech. Based Des. Struct., https://doi.org/10.1080/15397734.2020.1751198.
- Sadoughifar, A., Farhatnia, F., Izadinia, M. and Talaeetaba, S.B. (2020), "Size-dependent buckling behaviour of FG annular/circular thick nanoplates with porosities resting on Kerr foundation based on new hyperbolic shear deformation theory", Struct. Eng. Mech., 73(3), 225-238. https://doi.org/10.12989/sem.2020.73.3.225.
- Selmi, A. (2019), "Effectiveness of SWNT in reducing the crack effect on the dynamic behavior of aluminium alloy", Adv. Nano Res., 7(5), 365-377. https://doi.org/10.12989/anr.2019.7.5.365.
- Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam". Smart Struct. Syst., 26(3), 361-371. https://doi.org/10.12989/sss.2020.26.3.361.
- Shabana, Y.M., Elsawaf, A., Khalaf, H. and Khalil, Y. (2017), "Stresses minimization in functionally graded cylinders using particle swarm optimization technique", Int. J. Press. Vess. Piping, 154, 1-10. https://doi.org/10.1016/j.ijpvp.2017.05.013.
- Shahmohammadi, M.A., Azhari, M. and Saadatpour, M.M. (2020), "Free vibration analysis of sandwich FGM shells using isogeometric B-spline finite strip method", Steel Compos. Struct., 34(3), 361-376. https://doi.org/10.12989/scs.2020.34.3.361.
- Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018b), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004
- Sheikholeslami, S.A. and Saidi, A.R. (2013), "Vibration analysis of functionally graded rectangular plates resting on elastic foundation using higher-order shear and normal deformable plate theory", Compos. Struct., 106, 350-361. https://doi.org/10.1016/j.compstruct.2013.06.016.
- Shokouhifard, V., Mohebpour, S., Malekzadeh, P. and Alighanbari, H. (2020), "An inclined FGM beam under a moving mass considering Coriolis and centrifugal accelerations", Steel Compos. Struct., 35(1), 61-76. https://doi.org/10.12989/scs.2020.35.1.061.
- Sofiyev, A.H., Deniz, A., Akcay, I.H. and Yusufogclu, E. (2006), "The vibration and stability of a three-layered conical shell containing an FGM layer subjected to axial compressive load", Acta Mechanica, 183, 129-144. https://doi.org/10.1007/s00707-006-0328-5.
- Srinivas, S, JogaRao, CV, Rao, AK.(1970), "An exact analysis for vibration of simply supported homogeneous and laminated thick rectangular plates", J Sound Vib, 12(2), 187-199. https://doi.org/10.1016/0022-460X(70)90089-1.
- Thai, H.T. and Kim, S.E. (2013), "A simple quasi-3D sinusoidal shear deformation theory for functionally graded plates", Compos. Struct., 99, 172-180. https://doi.org/10.1016/j.compstruct.2012.11.030.
- Thanh, C.L., Nguyen, T.N., Vu, T.H., Khatir, S. and Abdel Wahab, M. (2020), "A geometrically nonlinear size-dependent hypothesis for porous functionally graded micro-plate", Eng. with Comput.. https://doi.org/10.1007/s00366-020-01154-0.
- Timesli, A. (2020), "Prediction of the critical buckling load of SWCNT reinforced concrete cylindrical shell embedded in an elastic foundation", Comput. Concrete, 26(1), 53-62. https://doi.org/10.12989/cac.2020.26.1.053.
- Vaghefi, R., Baradaran, G.H. and Koohkan, H. (2010), "Three-dimensional static analysis of thick functionally graded plates by using meshless local Petrove-Galerkin (MLPG) method", Eng. Anal. Bound Elem., 34, 564-573. https://doi.org/10.1016/j.enganabound.2010.01.005.
- Vaishali, Mukhopadhyay, T., Karsh, P.K., Basu, B. and Dey, S. (2020), "Machine learning based stochastic dynamic analysis of functionally graded shells", Compos. Struct., 111870. https://doi.org/10.1016/j.compstruct.2020.111870.
- Vel, S.S. and Batra, R.C. (2004), "Three-dimensional exact solution for the vibration of functionally graded rectangular plates", J Sound Vib., 272, 703-730. https://doi.org/10.1016/S0022-460X(03)00412-7.
- Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
- Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/cac.2020.26.2.107.
- Yuan, Y., Zhao, K., Zhao, Y. and Kiani, K. (2020), "Nonlocal-integro-vibro analysis of vertically aligned monolayered nonuniform FGM nanorods", Steel Compos. Struct., 37(5), 551-569. https://doi.org/10.12989/scs.2020.37.5.551.
- Zenkour, A.M. (2007), "Benchmark trigonometric and 3-D elasticity solutions for an exponentially graded thick rectangular plate", Arch. Appl. Mech., 77(4), 197-214. https://doi.org/10.1007/s00419-006-0084-y.
- Zhang, H., Jiang, J.K. and Zhang, Z.C. (2014), "Three-dimensional elasticity solutions for bending of generally supported thick functionally graded plates", Appl. Math. Mech., 35(11), 1467-1478. https://doi.org/10.1007/s10483-014-1871-7.
- Zhu, P. and Liew, K.M. (2011), "Free vibration analysis of moderately thick functionally graded plates by local Krigingmeshless method", Compos. Struct., 93(11), 2925-2944. https://doi.org/10.1016/j.compstruct.2011.05.011.