DOI QR코드

DOI QR Code

Enhanced thermal and mechanical properties of epoxy composites at ultra-low loading of functionalized MoS2 nanosheets

  • Riaz, Shahina (Department of Chemistry, Inha University) ;
  • Rhee, Kyong Y. (Department of Mechanical Engineering, College of Engineering, Kyung Hee University) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University)
  • 투고 : 2020.04.20
  • 심사 : 2021.09.20
  • 발행 : 2021.11.25

초록

In this study, single-step branched polyethyleneimine (PEI)-assisted exfoliation of molybdenum sulfide nanosheets (MoS2-PEI) was carried out. These functionalized MoS2-PEI nanosheets were employed as toughening agents for epoxy composites. The loadings of nanosheets were kept lower than 1 wt.%. The mechanical and thermal properties, and interfacial interactions of epoxy composites were investigated. The epoxy composites have shown ~67% and ~101% enhancements in fracture toughness (KIC) in fracture energy (GIC), respectively, at nanosheets loadings as small as 0.09 wt.% (EP/MoS2-PEI-0.09), KIC has shown a direct linear relationship with the surface free energy and is highest at 52 mJ.m-2 for the EP/MoS2-PEI-0.09 composite. However, the surface free energy values of EP/MoS2-PEI-0.16 and EP/MoS2-PEI-1 composites decreased to 48 mJ.m-2 and 45 mJ.m-2. The overall flexural modulus (E) and strength (σ) were not highly responsive to the addition of the MoS2-PEI nanosheets. Furthermore, the thermal stability and thermomechanical properties of the epoxy composites improved significantly. The optimum MoS2-PEI nanosheet loading was observed to be 0.09 wt.%, beyond this a gradual decrease in thermal stability and mechanical properties was observed. The significant improvement in thermal and mechanical properties of the epoxy composites could be accredited to the good interfacial interaction between the MoS2-PEInanosheets and epoxy matrix at the interface and the inherent strength, high aspect ratio, and excellent barrier effect of PEI molecules.

키워드

과제정보

The Technological Innovation R&D Program (S2829590) funded by the Small and Medium Business Administration (SMBA, Korea). This research was also supported by Korea Evaluation institute of Industrial Technology (KEIT) through the Carbon Cluster Construction project [10083586, Development of petroleum based graphite fibers with ultra-high thermal conductivity] funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea).

참고문헌

  1. Abbasi, H., Antunes, M. and Velasco, J.I. (2019), "Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding", Prog. Mater Sci., 103, 319-373. https://doi.org/10.1016/j.pmatsci.2019.02.003.
  2. Abdullah, M., Low, G.K. and Matthews, R.W. (1990), "Effects of common inorganic anions on rates of photocatalytic oxidation of organic carbon over illuminated titanium dioxide", J. Phys. Chem., 94(17), 6820-6825. https://doi.org/10.1021/j100380a051.
  3. Ahmadi-Moghadam, B., Sharafimasooleh, M., Shadlou, S. and Taheri, F. (2015), "Effect of functionalization of graphene nanoplatelets on the mechanical response of graphene/epoxy composites", Mater. Des., 66, 142-149. https://doi.org/10.1016/j.matdes.2014.10.047.
  4. Arenal, R., Blase, X. and Loiseau, A. (2010), "Boron-nitride and boron-carbonitride nanotubes: synthesis, characterization and theory", Adv. Phy., 59(2), 101-179. https://doi.org/10.1080/00018730903562033.
  5. Baker, R.W. (2012), Membrane technology and applications, John Wiley & Sons.
  6. Banh, T.T., Luu, N.G. and Lee, D. (2021), "A non-homogeneous multi-material topology optimization approach for functionally graded structures with cracks", Compos. Struct., 273, 114230. https://doi.org/10.1016/j.compstruct.2021.114230.
  7. Banh, T.T., Nguyen, X.Q., Herrmann, M., Filippou, F.C. and Lee, D. (2020), "Multiphase material topology optimization of Mindlin-Reissner plate with nonlinear variable thickness and Winkler foundation", Steel Compos. Struct., 35(1), 129-145. https://doi.org/10.12989/scs.2020.35.1.129.
  8. Beylergil, B., Tanoglu, M. and Aktas, E. (2019), "Mode-I fracture toughness of carbon fiber/epoxy composites interleaved by aramid nonwoven veils", Steel Compos. Struct., 31(2), 113-123. https://doi.org/10.12989/scs.2019.31.2.113.
  9. Blackman, B., Kinloch, A., Lee, J.S., Taylor, A., Agarwal, R., Schueneman, G. and Sprenger, S. (2007), "The fracture and fatigue behaviour of nano-modified epoxy polymers", J. Mater. Sci., 42(16), 7049-7051. https://doi.org/10.1007/s10853-007-1768-6.
  10. Bortz, D.R., Heras, E.G. and Martin-Gullon, I. (2011), "Impressive fatigue life and fracture toughness improvements in graphene oxide/epoxy composites", Macromolecules, 45(1), 238-245. https://doi.org/10.1021/ma201563k.
  11. Chen, J., Dong, Y.J., Jin, F.L. and Park, S.J. (2019), "Flexural properties and electrical conductivity of epoxy resin/carbon fiber cloth/metallic powder composites", Macromol. Res., 27(1), 10-13. https://doi.org/10.1007/s13233-019-7006-7.
  12. Chen, P., Liang, X., Xu, Y., Zhou, Y. and Nie, W. (2018), "Enhanced thermal and mechanical properties of PLA/MoS2 nanocomposites synthesized via the in-situ ring-opening polymerization", Appl. Surf. Sci., 440, 1143-1149. https://doi.org/10.1016/j.apsusc.2018.01.260.
  13. Chen, P., Liang, X., Zhou, Y. and Nie, W. (2018), "Effective reinforcement of amino-functionalized molybdenum disulfide on epoxy-based composites via strengthened interfacial interaction", J. Mater. Sci., 53(11), 8221-8231. https://doi.org/10.1007/s10853-018-2153-3.
  14. Chen, S. and Feng, J. (2014), "Epoxy laminated composites reinforced with polyethyleneimine functionalized carbon fiber fabric: Mechanical and thermal properties", Compos. Sci. Technol., 101, 145-151. https://doi.org/10.1016/j.compscitech.2014.07.003.
  15. Eksik, O., Gao, J., Shojaee, S.A., Thomas, A., Chow, P., Bartolucci, S.F., Lucca, D.A. and Koratkar, N. (2014), "Epoxy nanocomposites with two-dimensional transition metal dichalcogenide additives", Acs Nano., 8(5), 5282-5289. https://doi.org/10.1021/nn5014098.
  16. Feng, X., Xing, W., Yang, H., Yuan, B., Song, L., Hu, Y. and Liew, K.M. (2015), "High-performance poly (ethylene oxide)/molybdenum disulfide nanocomposite films: reinforcement of properties based on the gradient interface effect", ACS Appl. Mater. Interfaces., 7(24), 13164-13173. https://doi.org/10.1021/acsami.5b02312.
  17. Guo, H., Jiao, T., Zhang, Q., Guo, W., Peng, Q. and Yan, X. (2015), "Preparation of graphene oxide-based hydrogels as efficient dye adsorbents for wastewater treatment", Nanoscale Res. lett., 10(1), 272. https://doi.org/10.1186/s11671-015-0931-2.
  18. Hsieh, T., Kinloch, A., Masania, K., Lee, J.S., Taylor, A. and Sprenger, S. (2010), "The toughness of epoxy polymers and fibre composites modified with rubber microparticles and silica nanoparticles", J. Mater. Sci., 45(5), 1193-1210. https://doi.org/10.1007/s10853-009-4064-9.
  19. Ibrahem, M.A., Lan, T.W., Huang, J.K., Chen, Y.Y., Wei, K.H., Li, L.J. and Chu, C.W. (2013), "High quantity and quality fewlayers transition metal disulfide nanosheets from wet-milling exfoliation", RSC Adv., 3(32), 13193-13202. https://doi.org/10.1039/C3RA41744A.
  20. Islam, M.E., Rahman, M.M., Hosur, M. and Jeelani, S. (2015), "Thermal stability and kinetics analysis of epoxy composites modified with reactive polyol diluent and multiwalled carbon nanotubes", J. Appl. Polym. Sci., 132(9). https://doi.org/10.1002/app.41558.
  21. Kang, W.S., Rhee, K.Y. and Park, S.J. (2017), "Influence of surface energetics of graphene oxide on fracture toughness of epoxy nanocomposites", Compos. Part B-Eng., 114, 175-183. https://doi.org/10.1016/j.compositesb.2017.01.032.
  22. Karimi, B. and Ramezanzadeh, B. (2017), "A comparative study on the effects of ultrathin luminescent graphene oxide quantum dot (GOQD) and graphene oxide (GO) nanosheets on the interfacial interactions and mechanical properties of an epoxy composite", J. Colloid Interface Sci., 493, 62-76. https://doi.org/10.1016/j.jcis.2017.01.013.
  23. Kim, K.W., Kim, D.K., Kim, B.S., An, K.H., Park, S.-., Rhee, K.Y. and Kim, B.J. (2017), "Cure behaviors and mechanical properties of carbon fiber-reinforced nylon6/epoxy blended matrix composites", Compos. Part B-Eng., 112, 15-21. https://doi.org/10.1016/j.compositesb.2016.12.009.
  24. Kim, S.H., Heo, Y.-J., Park, M., Min, B.-G., Rhee, K.Y. and Park, S.-J. (2018), "Effect of hydrophilic graphite flake on thermal conductivity and fracture toughness of basalt fibers/epoxy composites", Compos. Part B-Eng., 153, 9-16. https://doi.org/10.1016/j.compositesb.2018.07.022.
  25. Lee, W.H., Loo, C.Y., Nomura, C.T. and Sudesh, K. (2008), "Biosynthesis of polyhydroxyalkanoate copolymers from mixtures of plant oils and 3-hydroxyvalerate precursors", Bioresour. Technol., 99(15), 6844-6851. https://doi.org/10.1016/j.biortech.2008.01.051.
  26. Li, D. and Neumann, A. (1992), "Contact angles on hydrophobic solid surfaces and their interpretation", J. Colloid Interface Sci., 148(1), 190-200. https://doi.org/10.1016/0021-9797(92)90127-8.
  27. Li, D. and Neumann, A. (1993), "Equilibrium of capillary systems with an elastic liquid-vapor interface", Langmuir, 9(1), 50-54. https://doi.org/10.1021/la00025a014.
  28. Li, Z., Ottmann, A., Zhang, T., Sun, Q., Meyer, H.P., Vaynzof, Y., Xiang, J. and Klingeler, R. (2017), "Preparation of hierarchical C@ MoS2@ C sandwiched hollow spheres for lithium ion batteries", J. Mater. Chem. A, 5(8), 3987-3994. https://doi.org/10.1039/C6TA10439H.
  29. Liu, N., Kim, P., Kim, J.H., Ye, J.H., Kim, S. and Lee, C.J. (2014), "Large-area atomically thin MoS2 nanosheets prepared using electrochemical exfoliation", ACS Nano., 8(7), 6902-6910. https://doi.org/10.1021/nn5016242.
  30. Liu, N., Yang, L., Wang, S., Zhong, Z., He, S., Yang, X., Gao, Q. and Tang, Y. (2015), "Ultrathin MoS2 nanosheets growing within an in-situ-formed template as efficient electrocatalysts for hydrogen evolution", J. Power Sources., 275, 588-594. https://doi.org/10.1016/j.jpowsour.2014.11.039.
  31. Loh, K.P., Bao, Q., Eda, G. and Chhowalla, M. (2010), "Graphene oxide as a chemically tunable platform for optical applications", Nat. Chem., 2, 1015. https://doi.org/10.1038/nchem.907.
  32. Ma, L., Meng, L., Wu, G., Wang, Y., Zhao, M., Zhang, C. and Huang, Y. (2015), "Improving the interfacial properties of carbon fiber-reinforced epoxy composites by grafting of branched polyethyleneimine on carbon fiber surface in supercritical methanol", Compos. Sci. Technol., 114, 64-71. https://doi.org/10.1016/j.compscitech.2015.04.011.
  33. Moloney, A., Kausch, H. and Stieger, H. (1983), "The fracture of particulate-filled epoxide resins", J. Mater. Sci., 18(1), 208-216. https://doi.org/10.1007/BF00543827.
  34. Naffakh, M., Diez-Pascual, A.M., Marco, C., Ellis, G.J. and Gomez-Fatou, M.A. (2013), "Opportunities and challenges in the use of inorganic fullerene-like nanoparticles to produce advanced polymer nanocomposites", Prog. Polym. Sci., 38(8), 1163-1231. https://doi.org/10.1016/j.progpolymsci.2013.04.001.
  35. Nguyen, A.P., Banh, T.T., Lee, D., Lee, J., Kang, J. and Shin, S. (2018), "Design of multiphase carbon fiber reinforcement of crack existing concrete structures using topology optimization", Steel Compos. Struct., 29(5), 635-645. https://doi.org/10.12989/scs.2018.29.5.635.
  36. Ozcan, C. and Hasirci, N. (2008), "Evaluation of surface free energy for PMMA films", J. Appl. Polym. Sci., 108(1), 438-446. https://doi.org/10.1002/app.27687.
  37. Pant, B., Park, M. and Park, S.J. (2019), "MoS2/CdS/TiO2 ternary composite incorporated into carbon nanofibers for the removal of organic pollutants from water", Inorg. Chem. Commun., 102, 113-119. https://doi.org/10.1016/j.inoche.2019.02.022.
  38. Park, J.M., Kim, D.S., Kong, J.W., Kim, M., Kim, W. and Park, I.S. (2002), "Interfacial adhesion and microfailure modes of electrodeposited carbon fiber/epoxy-PEI composites by microdroplet and surface wettability tests", J. Colloid Interface Sci., 249(1), 62-77. https://doi.org/10.1006/jcis.2002.8252.
  39. Park, S.J., Seo, M.K. and Nah, C. (2005), "Influence of surface characteristics of carbon blacks on cure and mechanical behaviors of rubber matrix compoundings", J. Colloid Interface Sci., 291(1), 229-235. https://doi.org/10.1016/j.jcis.2005.04.103.
  40. Park, Y.T., Qian, Y., Chan, C., Suh, T., Nejhad, M.G., Macosko, C.W. and Stein, A. (2015), "Epoxy toughening with low graphene loading", Adv. Funct. Mater., 25(4), 575-585. https://doi.org/10.1002/adfm.201402553.
  41. Patterson, J.R., Catledge, S.A., Vohra, Y.K., Akella, J. and Weir, S.T. (2000), "Electrical and mechanical properties of C 70 fullerene and graphite under high pressures studied using designer diamond anvils", Phys. Rev. Lett., 85(25), 5364. https://doi.org/10.1103/PhysRevLett.85.5364.
  42. Pekbey, Y., Aslantas, K. and Yumak, N. (2017), "Ballistic impact response of Kevlar Composites with filled epoxy matrix", Steel Compos. Struct., 22(4), 191-200. https://doi.org/10.12989/scs.2017.24.2.191.
  43. Rafiee, M.A., Rafiee, J., Srivastava, I., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2010), "Fracture and fatigue in graphene nanocomposites", Small, 6(2), 179-183. https://doi.org/10.1002/smll.200901480.
  44. Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2009), "Enhanced mechanical properties of nanocomposites at low graphene content", ACS Nano., 3(12), 3884-3890. https://doi.org/10.1002/smll.200901480.
  45. Riaz, S. and Park, S.J. (2019), "Thermal and mechanical interfacial behaviors of graphene oxide-reinforced epoxy composites cured by thermal latent catalyst", Materials, 12(8), 1354. https://doi.org/10.3390/ma12081354.
  46. Riaz, S. and Park, S.J. (2020), "Effective reinforcement of melamine-functionalized WS2 nanosheets in epoxy nanocomposites at low loading via enhanced interfacial interaction", Macromol. Res., 28(12), 1116-1126. https://doi.org/10.1016/j.compositesa.2021.106419.
  47. Riaz, S. and Park, S.J. (2021), "A comparative study on nanoinclusion effect of MoS2 nanosheets and MoS2 quantum dots on fracture toughness and interfacial properties of epoxy composites", Compos. Part A Appl. Sci. Manuf., 146, 106419. https://doi.org/10.1016/j.compositesa.2021.106419.
  48. Ribeiro, H., Trigueiro, J.P.C., Lopes, M.C., Pedrotti, J.J., Woellner, C.F., Silva, W.M., Silva, G.G. and Ajayan, P.M. (2018), "Enhanced thermal conductivity and mechanical properties of hybrid MoS2/h-BN polyurethane nanocomposites", J. Appl. Polym. Sci., 135(30), 46560. https://doi.org/10.1002/app.46560
  49. Sahu, M., Narashimhan, L., Prakash, O. and Raichur, A.M. (2017), "Noncovalently functionalized tungsten disulfide nanosheets for enhanced mechanical and thermal properties of epoxy nanocomposites", ACS Appl. Mater. Interfaces., 9(16), 14347-14357. https://doi.org/10.1021/acsami.7b01608.
  50. Saidi, M., Pasc, A., El Moujahid, C., Canilho, N., Badawi, M., Delgado-Sanchez, C., Celzard, A., Fierro, V., Peignier, R. and Kouitat-Njiwa, R. (2019), "Improved tribological properties, thermal and colloidal stability of poly-α-olefins based lubricants with hydrophobic MoS2 submicron additives", J. Colloid Interface Sci., 562, 91-101. https://doi.org/10.1016/j.jcis.2019.12.007.
  51. Sarikaya, E., Callioglu, H. and Demirel, H. (2019), "Production of epoxy composites reinforced by different natural fibers and their mechanical properties", Compos. Part B-Eng., 167, 461-466. https://doi.org/10.1016/j.compositesb.2019.03.020.
  52. Satheeshkumar, E., Bandyopadhyay, A., Sreedhara, M., Pati, S.K., Rao, C. and Yoshimura, M. (2017), "One-step simultaneous exfoliation and covalent functionalization of MoS2 by amino acid induced solution processes", Chem. Nano Mat., 3(3), 172-177. https://doi.org/10.1002/cnma.201600363.
  53. Saud, P.S., Pant, B., Ojha, G.P., Kim, D.U., Kuk, Y.S., Park, S.J., Park, M. and Kim, H.Y. (2017), "One-pot synthesis of Ag3PO4/MoS2 nanocomposite with highly efficient photocatalytic activity", J. Environ. Chem. Eng., 5(6), 5521-5527. https://doi.org/10.1016/j.jece.2017.10.040.
  54. Shimizu, R.N. and Demarquette, N.R. (2000), "Evaluation of surface energy of solid polymers using different models", J. Appl. Polym. Sci., 76(12), 1831-1845. https://doi.org/10.1002/(SICI)1097-4628(20000620)76:12%3C1831::AID-APP14%3E3.0.CO;2-Q.
  55. Singh, V.K., Mishra, H., Ali, R., Umrao, S., Srivastava, R., Abraham, S., Misra, A., Singh, V.N., Mishra, H. and Tiwari, R. (2018), "In situ functionalized fluorescent WS2-QDs as sensitive and selective probe for Fe3+ and a detailed study of its fluorescence quenching", ACS Appl. Nano Mater., 2(1), 566-576. https://doi.org/10.1021/acsanm.8b02162.
  56. Wan, S. and Cheng, Q. (2017), "Fatigue-resistant bioinspired graphene-based nanocomposites", Adv. Funct. Mater., 27(43), 1703459. https://doi.org/10.1002/adfm.201703459.
  57. Wan, Y.J., Tang, L.C., Gong, L.X., Yan, D., Li, Y.B., Wu, L.B., Jiang, J.X. and Lai, G.Q. (2014), "Grafting of epoxy chains onto graphene oxide for epoxy composites with improved mechanical and thermal properties", Carbon, 69, 467-480. https://doi.org/10.1016/j.carbon.2013.12.050.
  58. Wang, K., Chen, L., Wu, J., Toh, M.L., He, C. and Yee, A.F. (2005), "Epoxy nanocomposites with highly exfoliated clay: mechanical properties and fracture mechanisms", Macromolecules, 38(3), 788-800. https://doi.org/10.1021/ma048465n.
  59. Wang, S., Zhang, Y., Abidi, N. and Cabrales, L. (2009), "Wettability and surface free energy of graphene films", Langmuir., 25(18), 11078-11081. https://doi.org/10.1021/la901402f.
  60. Wang, X., Kalali, E.N. and Wang, D.Y. (2015), "An in situ polymerization approach for functionalized MoS2/nylon-6 nanocomposites with enhanced mechanical properties and thermal stability", J. Mater. Chem. A, 3(47), 24112-24120. https://doi.org/10.1039/C5TA06071K.
  61. Wetzel, B., Rosso, P., Haupert, F. and Friedrich, K. (2006), "Epoxy nanocomposites-fracture and toughening mechanisms", Eng. Fract. Mech., 73(16), 2375-2398. https://doi.org/10.1021/ma048465n.
  62. Wu, Q., Chen, S. and Liu, H. (2014), "Effect of surface chemistry of polyethyleneimine-grafted polypropylene fiber on its CO2 adsorption", RSC Adv., 4(52), 27176-27183. https://doi.org/10.1039/C4RA01232A.
  63. Yi, J., She, X., Song, Y., Mao, M., Xia, K., Xu, Y., Mo, Z., Wu, J., Xu, H. and Li, H. (2018), "Solvothermal synthesis of metallic 1T-WS2: A supporting co-catalyst on carbon nitride nanosheets toward photocatalytic hydrogen evolution", Chem. Eng. J., 335, 282-289. https://doi.org/10.1016/j.cej.2017.10.125.
  64. Yim, Y.J., Bae, K.M. and Park, S.J. (2018), "Influence of Oxyfluorination on Geometrical Pull-Out Behavior of Carbon-Fiber-Reinforced Epoxy Matrix Composites", Macromol. Res., 26(9), 794-799. https://doi.org/10.1007/s13233-018-6115-z.
  65. Yu, H., Liu, J., Wen, X., Jiang, Z., Wang, Y., Wang, L., Zheng, J., Fu, S. and Tang, T. (2011), "Charing polymer wrapped carbon nanotubes for simultaneously improving the flame retardancy and mechanical properties of epoxy resin", Polymer., 52(21), 4891-4898. https://doi.org/10.1016/j.polymer.2011.08.013.
  66. Yu, J., Huang, X., Wu, C., Wu, X., Wang, G. and Jiang, P. (2012), "Interfacial modification of boron nitride nanoplatelets for epoxy composites with improved thermal properties", Polymer. 53(2), 471-480. https://doi.org/10.1016/j.polymer.2011.12.040.
  67. Zeng, K., Wang, L. and Zheng, S. (2011), "Nanostructures and surface hydrophobicity of epoxy thermosets containing hepta (3, 3, 3-trifluropropyl) polyhedral oligomeric silsesquioxane-capped poly (hydroxyether of bisphenol A) telechelics", J. Colloid Interface Sci., 363(1), 250-260. https://doi.org/10.1016/j.jcis.2011.06.001.
  68. Zhang, Y. and Park, S.J. (2017), "Enhanced interfacial interaction by grafting carboxylated-macromolecular chains on nanodiamond surfaces for epoxy-based thermosets", J. Polym. Sci., Part B: Polym. Phys., 55(24), 1890-1898. https://doi.org/10.1002/polb.24522.
  69. Zhang, Y., Yang, H.M. and Park, S.J. (2018), "Synthesis and characterization of nitrogen-doped TiO2 coatings on reduced graphene oxide for enhancing the visible light photocatalytic activity", Curr. Appl. Phy., 18(2), 163-169. https://doi.org/10.1016/j.cap.2017.12.001.
  70. Zhao, M., Liu, L., Zhang, B., Sun, M., Zhang, X., Zhang, X., Li, J. and Wang, L. (2018), "Epoxy composites with functionalized molybdenum disulfide nanoplatelet additives", RSC Adv., 8(61), 35170-35178. https://doi.org/10.1039/C8RA07448H.
  71. Zhao, Q., Liu, Y. and Abel, E. (2005), "Surface free energies of electroless Ni-P based composite coatings", Appl. Surf. Sci., 240(1-4), 441-451. https://doi.org/10.1016/j.apsusc.2004.07.013.
  72. Zhou, K., Liu, J., Shi, Y., Jiang, S., Wang, D., Hu, Y. and Gui, Z. (2015), "MoS2 nanolayers grown on carbon nanotubes: an advanced reinforcement for epoxy composites", ACS Appl. Mater. Interfaces., 7(11), 6070-6081. https://doi.org/10.1021/acsami.5b00762.
  73. Zhu, X.D., Wang, K.X., Yan, D. J., Le, S.R., Ma, R.J., Sun, K.N. and Liu, Y.T. (2015), "Creating a synergistic interplay between tubular MoS2 and particulate Fe3O4 for improved lithium storage", Chem. Commun., 51(59), 11888-11891. https://doi.org/10.1039/C5CC03898G.