Acknowledgement
This research was supported by a grant (19CTAP-C152266-01) from Technology Advancement Research Program (TARP) funded by Ministry of Land, Infrastructure and Transport of Korean government.
References
- Bayat, M. and Zahrai, S.M. (2017), "Seismic performance of mid-rise steel frames with semi-rigid connections having different moment capacity", Steel Compos. Struct., 25(1), 1-17. https://doi.org/10.12989/scs.2017.25.1.001
- Berger, R. (1981), "Comparison of the gompertz and logistic equations to describe plant disease progress", Phytopathology, 71, 716-719. https://doi.org/10.1094/Phyto-71-716
- Braganca, L., Mateus, R. and Koukkar H. (2010), Building sustainability assessment. Sustainability, 2.
- Cornbleet, P.J. and Gochman, N. (1979), "Incorrect least-squares regression coefficients in method-comparison analysis", Clinical Chem., 25(3), 432-438. https://doi.org/10.1093/clinchem/25.3.432.
- Cramer, C.H., Gomberg, J.S., Schweig, E.S., Waldron, B.A. and Tucker, K. (2004), The Memphis, Shelby County, Tennessee, Seismic Hazard Maps. US Geological Survey Open-File Report, 4, 1294.
- Dolce, M., Kappos, A., Masi, A., Penelis, G. and Vona, M. (2006). "Vulnerability assessment and earthquake damage scenarios of the building stock of Potenza (Southern Italy) using Italian and Greek methodologies", Eng. Struct., 28(3), 357-371. https://doi.org/10.1016/j.engstruct.2005.08.009.
- Dong Y., Frangopol, D.M. and Saydam, D. (2013), "Time-variant sustainability assessment of seismically vulnerable bridges subjected to multiple hazards", Earthq. Eng. Struct. D., 42(10), 1451-1467. https://doi.org/10.1002/eqe.2281.
- Dong, Y. and Frangopol, D.M. (2016a), "Performance-based seismic assessment of conventional and base-isolated steel buildings including environmental impact and resilience", Earthq. Eng. Struct. D., 45(5), 739-756. https://doi.org/10.1002/eqe.2682.
- Dong, Y. and Frangopol D.M. (2016b), "Probabilistic timedependent multihazard life-cycle assessment and resilience of bridges considering climate change", J. Perform. Constr. Fac., 30(5), 04016034. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000883.
- Dukes, J., Mangalathu, S., Padgett, J.E. and DesRoches, R. (2018), "Development of a bridge-specific fragility methodology to improve the seismic resilience of bridges", Earthq. Struct., 15(3), 253-261. https://doi.org/10.12989/eas.2018.15.3.253.
- Elnashai, A.S., Papanikolau, V. and Lee, D.H. (2011), "ZEUS Non-linear: A System for Inelastic", Analysis of Structures V1.9.0, UIUC, Urbana-Champaign, IL, .
- Frangopol, D.M., Lin, K.Y. and Estes, A.C. (1997), "Life-cycle cost design of deteriorating structures", J. Struct. Eng., 123, 1390-1401. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:10(1390).
- Hamada, M. and Wu, J. (2000), Experiments: planning, analysis, and parameter design optimization, Wiley New York.
- Hazus-MH, F. (2003), Flood Model: Technical Manual. Federal Emergency Management Agency.
- Hwang, H.H. and Jaw, J.W. (1990), "Probabilistic damage analysis of structures", J. Struct. Eng., 116(7), 1992-2007. https://doi.org/10.1061/(ASCE)0733-9445(1990)116:7(1992).
- Idels, L. (2008), Harvesting fisheries management strategies with modified effort function [pre-print].
- Jeon, J.S., Mangalathu, S. and Lee, SY. (2019), "Seismic fragility curves for California concrete bridges with flared two-column bents", Bull. Earthq. Eng., 17(7), 4299-4319. https://doi.org/10.1007/s10518-019-00621-4.
- Kia, M., Banazadeh, M. and Bayat, M. (2018), "Rapid seismic vulnerability assessment by new regression-based demand and collapse models for steel moment frames", Earthq. Struct., 14, 203-214. https://doi.org/10.12989/eas.2018.14.3.203.
- Linzell, D.G. and Nadakuditi, V.P. (2011), "Parameters influencing seismic response of horizontally curved, steel, I-girder bridges", Steel Compos. Struct., 11(1), 21-38. https://doi.org/10.12989/scs.2011.11.1.021.
- Liu, Z., Zhou, C. and Xue, J. (2019), "Study on seismic performance of steel frame with archaized-style under pseudo-dynamic loading", Earthq. Struct., 17(1), 39-48. https://doi.org/10.12989/eas.2019.17.1.039.
- Mangalathu, S., Jeon, J.S. and Jiang, J. (2019), "Skew adjustment factors for fragilities of California box-girder bridges subjected to near-fault and far-field ground motions", J. Bridge Eng., 24 (1), 04018109. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001338.
- Menon, A., Mehrotra, K., Mohan, C.K. and Ranka, S. (1996), "Characterization of a class of sigmoid functions with applications to neural networks", Neural Networks, 9(5), 819-835. https://doi.org/10.1016/0893-6080(95)00107-7.
- Padgett, J.E. and Tapia, C. (2013), "Sustainability of natural hazard risk mitigation: Life cycle analysis of environmental indicators for bridge infrastructure", J. Infrastruct. Syst., 19(4), 395-408. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000138.
- Petersen, M.D., Moschetti, M.P., Powers, P.M., Mueller, C.S., Haller, K.M., Frankel, A.D., Zeng, Y., RezaeianE, S., Harmsen, S. and Boyd, O. (2014), Documentation for the 2014 update of the United States national seismic hazard maps, Open-File Report 2014-1091. US Geological Survey.
- Pinto, P.E. (2012), Probabilistic performance-based seismic design: Technical report, fib Federation internationale du beton.
- Prestandared, F. (2000), commentary for the seismic rehabilitation of buildings (FEMA356). Washington, DC: Federal Emergency Management Agency, 7.
- Rix, G. and Fernandes-Leon, J. (2004), Synthetic ground motions for Memphis, TN. Æ http://www.ce.gatech.edu/research/maegroundmotionae (Jul. 5, 2008).
- Rogers, L.P. and Seo, J. (2017), "Vulnerability sensitivity of curved precast-concrete I-girder bridges with various configurations subjected to multiple ground motions", J. Bridge Eng., 22(2), 04016118. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000973.
- Seo, J., Duenas-Osorio, L., Craig, J.I. and Goodno, B. J. (2012), "Metamodel-based regional vulnerability estimate of irregular steel moment-frame structures subjected to earthquake events", Eng. Struct., 45, 585-597. https://doi.org/10.1016/j.engstruct.2012.07.003.
- Seo, J., Hatlestad, A.J., Kimn, J.H. and Hu, J.W. (2019), "Application of mathematical functions for seismic increment fragility determination", Eur. J. Environ. Civil Eng., https://doi.org/10.1080/19648189.2019.1665106.
- Seo, J. and Linzell D. (2013), "Use of response surface metamodels to generate system level fragilities for existing curved steel bridges", Eng. Struct., 52, 642-653. https://doi.org/10.1016/j.engstruct.2013.03.023.
- Seo, J. and Linzell D. "Horizontally curved steel bridge seismic vulnerability assessment", Eng. Struct., 34, 21-32. https://doi.org/10.1016/j.engstruct.2011.09.008
- Seo, J., Rogers, L.P., Hu, J.W. (2018), "Computational seismic evaluation of a curved prestressed concrete I-girder bridge equipped with shape memory alloy", Eur. J. Environ. Civil Eng., 1-20. https://doi.org/10.1080/19648189.2018.1492972.
- Seo, J. and Park, H. (2017), "Probabilistic seismic restoration cost estimation for transportation infrastructure portfolios with an emphasis on curved steel I-girder bridges", Struct. Saf., 65, 27-34. https://doi.org/10.1016/j.strusafe.2016.12.002.
- Shinozuka, M., Feng, M., Kim, H., Uzawa, T. and Ueda, T. (2003), Statistical analysis of fragility curves. Report. Multidisciplinary Center for Earthquake Engineering Research, MCEER-03-0002.
- Shiu, P. (1989), Power versus exponential. The Mathematical Gazette, 73, 25-28. https://doi.org/10.2307/3618199
- Song, L.L., Guo, T. and Shi, X. (2019), "Probabilistic seismic demand assessment of self-centering concrete frames under mainshock-aftershock excitations", Steel Compos. Struct., 33(5), 641-652. https://doi.org/10.12989/scs.2019.33.5.641.
- Taiyari, F., Mazzolani, F.M. and Bagheri, S. (2019), "Seismic performance assessment of steel building frames equipped with a novel type of bending dissipative braces", Steel Compos. Struct., 33(4), 525-535. https://doi.org/10.12989/scs.2019.33.4.525.
- Vandekerckhove, J., Matzke, D. and Wagenmakers, E.J. (2015), Model comparison and the principle of parsimony. Oxford handbook of computational and mathematical psychology, 300-319.
- Werner, S., Jernigan, J.B., Taylor, C.E. and Hwang, H. (1995), "Seismic vulnerability assessment of highway systems", NCEER Bulletin, 9, 1-11.
- Werner, S.D., Taylor, C.E., Cho, S., Lavoie, J.P., Huyck, C.K., Eitzel, C., Chung, H. and Eguchi, R.T. (2006), Redars 2 methodology and software for seismic risk analysis of highway systems.
- Yilmaz, T. and Banerjee, S. (2018), "Impact spectrum of flood hazard on seismic vulnerability of bridges", Struct. Eng. Mech., 66(4), 515-529. https://doi.org/10.12989/sem.2018.66.4.515.