Acknowledgement
The study was financially supported by the Korea Agency for Infrastructure Technology Advancement (project No.: 16AUDP-B066083-04) and the Taiwan Ministry of Science and Technology (MOST-109-2221-E-009-002-MY2 and MOST-109-2636-E-009-015-). The authors are very grateful to the sponsors.
References
- ABAQUS Inc. (2020), Abaqus User Subroutines Reference Guide, Rhode Island, USA.
- Asteris, P.G., Cotsovos, D.M., Chrysostomou, C.Z., Mohebkhah, A. and Al-Chaar, G.K. (2013), "Mathematical micromodeling of infilled frames: State of the art", Eng. Struct., 56, 1905-1921. https://doi.org/10.1016/j.engstruct.2013.08.010.
- ASTM (2015), Standard Test Method for Diagonal Tension (Shear) in Masonry Assemblages, E519/E519M, West Conshohocken, PA, USA.
- ASTM (2018), Standard Test Method for Compressive Strength of Masonry Prisms, C1314, West Conshohocken, PA, USA.
- ASTM (2019), Standard Test Methods and Definitions for Mechanical Testing of Steel Products, A370, West Conshohocken, PA, USA.
- ASTM (2020), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, C39/39M, West Conshohocken, PA, USA.
- ASTM (2020), Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (using 2-in. or [50 mm] Cube Specimens), C109/C109M, West Conshohocken, PA, USA.
- Bennett, R.M., Fischer, W.L., Flanagan, R.D. and Tenbus, M.A. (1996), "Evaluation and analysis of the performance of masonry infills during the Northridge earthquake", Oak Ridge National Lab., TN, USA. https://doi.org/10.2172/414635.
- Bertolesi, E., Milani, G. and Casolo, S. (2018), "Homogenization towards a mechanistic rigid body and spring model (HRBSM) for the non-linear dynamic analysis of 3D masonry structures", Meccanica, 53, 1819-1855. https://doi:10.1007/s11012-017-0665-6.
- Bourzam, A., Goto, T. and Miyajima, M. (2008), "Shear capacity prediction of confined masonry walls subjected to cyclic lateral loading", Earthq. Eng. Struct. Dyn., 25(2), 47-59. https://doi.org/10.2208/jsceseee.25.47s.
- BSI (2002), Methods of Test for Masonry. Part 3: Determination of Initial Shear Strength, 1052-3, London.
- Casolo, S. and Milani, G. (2013), "Simplified out-of-plane modelling of three-leaf masonry walls accounting for the material texture", Constr. Build. Mater., 40, 330-351. https://doi.org/10.1016/j.conbuildmat.2012.09.090.
- Cavaleri, L. and DiTrapani, F. (2014), "Cyclic response of masonry infilled RC frames: Experimental results and simplified modeling", Soil Dyn. Earthq. Eng., 65, 224-242. https://doi.org/10.1016/j.soildyn.2014.06.016.
- Choi, Y.C., Choi, H.K., Lee, D. and Choi, C.S. (2015), "Shear strength of unreinforced masonry wall retrofitted with fiber reinforced polymer and hybrid sheet", Int. J. Polym. Sci., 2015, Article ID 863057. https://doi.org/10.1155/2015/863057.
- Deng, M. and Yang, S. (2020), "Experimental and numerical evaluation of confined masonry walls retrofitted with engineered cementitious composites", Eng. Struct., 207, 110249. https://doi.org/10.1016/j.engstruct.2020.110249.
- Deng, M., Dong, Z. and Ma, P. (2019), "Cyclic loading tests of flexural-failure dominant URM walls strengthened with engineered cementitious composite", Eng. Struct., 194, 173-182. https://doi.org/10.1016/j.engstruct.2019.05.073.
- Dolsek, M. and Fajfar, P. (2005), "Simplified non-linear seismic analysis of infilled reinforced concrete frames", Earthq. Eng. Struct. Dyn., 34, 49-66. https://doi.org/10.1002/eqe.411.
- El-Diasity, M., Okail, H., Kamal, O. and Said, M. (2015), "Structural performance of confined masonry walls retrofitted using ferrocement and GFRP under in-plance cyclic loading", Eng. Struct., 94, 54-69. https://doi.org/10.1016/j.engstruct.2015.03.035.
- FEMA 306 (1999), Evaluation of Earthquake Damaged Concrete and Masonry Wall Buildings, Federal Emergency Management Agency, Washington, D.C., USA.
- Hori, N., Inoue, N., Purushotam, D., Nishida, T. and Kobayashi, J. (2006), "Experimental and analytical studies on earthquake resisting behaviour of confined concrete block masonry structures", Earthq. Eng. Struct. Dyn., 35(13), 1699-1719. https://doi.org/10.1002/eqe.604.
- Khatibinia, M. and Mohammadizadeh, M.R. (2017), "Intelligent fuzzy inference system approach for modeling of debonding strength in FRP retrofitted masonry elements", Struct. Eng. Mech., 61(2), 283-293. http://doi.org/10.12989/sem.2017.61.2.283.
- Kratzig, W.B. and Polling, R. (2004), "An elasto-plastic damage model for reinforced concrete with minimum number of material parameters", Comput. Struct., 82, 1201-1215. https://doi.org/10.1016/j.compstruc.2004.03.002.
- Laursen, P.T., Herskedal, N.A., Jansen, D.C. and Qu, B. (2015), "Out-of-plane structural response of interlocking compressed earth block walls", Mater. Struct., 48, 321-336. https://doi.org/10.1617/s11527-013-0186-2.
- Lee, D. and Shin, A. (2016), "Finite element study on the impact responses of concrete masonry unit walls strengthened with fiber-reinforced polymer composite materials", Compos. Struct., 154, 256-268. https://doi.org/10.1016/j.compstruct.2016.07.063.
- Lee, J. and Fenves, G.L. (1998), "A plastic-damage concrete model for earthquake analysis of dams", Earthq. Eng. Struct. Dyn., 27, 937-956. https://doi.org/10.1002/(SICI)1096-9845(199809)27:9<937::AID-EQE764>3.0.CO;2-5.
- Lee, J.H. (2005), "Seismic capacity and seismic retrofitting of low rise buildings-unreinforced masonry, brick-infilled RC frame, and steel slit damper retrofitted RC frame", Ph.D. Thesis, Kwang Won University, Seoul, Korea.
- Lotfi, H.R. and Shing, P.B. (1994), "Interface model applied to fracture of masonry structures", J. Struct. Eng., 120, 63-80. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:1(63).
- Lourenco, P.B., Rots, J.G. and Blaauwendraad, J. (1998), "Continuum model for masonry: parameter estimation and validation", J. Struct. Eng., 124, 642-652. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:6(642).
- Medeiros, P., Vasconcelos, G., Lourenco, P.B. and Gouveia, J. (2013), "Numerical modelling of non-confined and confined masonry walls", Constr. Build. Mater., 41, 968-976. https://doi.org/10.1016/j.conbuildmat.2012.07.013.
- Perez Gavilan, J.J., Flores, L.E. and Alcocer, S.M. (2019), "An experimental study of confined masonry walls with varying aspect ratios", Earthq. Spectra, 31(2), 945-968. https://doi.org/10.1193/090712EQS284M.
- Qu, B., Stirling, B.J., Jansen, D.C., Bland, D.W. and Laursen, P.T. (2015), "Testing of flexure-dominated interlocking compressed earth block walls", Constr. Build. Mater., 83, 34-43. https://doi.org/10.1016/j.conbuildmat.2015.02.080.
- Qu, B., Stirling, B.J., Laursen, P.T. and Jansen, D.C. (2015), "Analysis and seismic performance evaluation of flexure-dominated interlocking compressed earth block walls", Adv. Struct. Eng., 18(12), 2167-2179. https://doi.org/10.1260/1369-4332.18.12.2167.
- Ramirez, E., Lourenco, P.B. and D'Amato, M. (2018), "Seismic assessment of the Matera cathedral", 11th International Conference on Structural Analysis of Historical Constructions, Cusco, Peru, September.
- SilvaL, C., Lourenco, P.B. and Milani, G. (2017), "Rigid block and spring homogenized model (HRBSM) for masonry subjected to impact and blast loading", Int. J. Impact. Eng., 109, 14-28. https://doi.org/10.1016/j.ijimpeng.2017.05.012.
- Singhal, V. and Rai, D.C. (2016), "In-plane and out-of-plane behavior of confined masonry walls for various toothing and openings details and prediction of their strength and stiffness", Earthq. Eng. Struct. Dyn., 45(15), 2551-2569. https://doi.org/10.1002/eqe.2783.
- Stankowski, T. (1992), "Numerical simulation of failure in particle composites", Comput. Struct., 44, 459-468. https://doi.org/10.1016/0045-7949(92)90268-5.
- Voyiadjis, G.Z. and Kattan, P.I. (2005), "Damage Mechanics", 1st ed. CRC Press, Boca Raton, USA.
- Wang, Q., Chai, Z. and Wang, L. (2014), "Seismic capacity of brick masonry walls externally bonded GFRP under in-plane loading", Struct. Eng. Mech., 51(3), 413-431. http://doi.org/10.12989/sem.2014.51.3.413.
- Wei, C.Q., Zhou, X.G. and Ye, L.P. (2007), "Experimental study of masonry walls strengthened with CFRP", Struct. Eng. Mech., 25(6), 675-690. http://doi.org/10.12989/sem.2007.25.6.675.
- Wijaya, W., Kusumastuti, D., Suarjana, M. and Pribadi, K. (2011), "Experimental study on wall-frame connection of confined masonry wall", Procedia Eng., 14, 2094-2102. https://doi.org/10.1016/j.proeng.2011.07.263.
- Yacila, J., Salsavilca, J., Tarque, N. and Camata, G. (2019), "Experimental assessment of confined masonry walls retrofitted with SRG under lateral cyclic loads", Eng. Struct., 199, 109555. https://doi.org/10.1016/j.engstruct.2019.109555.
- Yang, K.H., Joo, D.B., Sim, J.I. and Kang, J.H. (2012), "In-plane seismic performance of unreinforced masonry walls strengthened with unbonded prestressed wire rope units", Eng. Struct., 45, 449-459. https://doi.org/10.1016/j.engstruct.2012.06.017.
- Yuen, T.Y.P., Deb, T., Zhang, H. and Liu, Y. (2019), "A fracture energy based damage-plasticity interfacial constitutive law for discrete finite element modelling of masonry structures", Comput. Struct., 220, 92-113. https://doi.org/10.1016/j.compstruc.2019.05.007.
- Yuen, Y.P. and Kuang, J.S. (2013), "Fourier-based incremental homogenisation of coupled unilateral damage-plasticity model for masonry structures", Int. J. Solid. Struct., 50, 3361-3374. https://doi.org/10.1016/j.ijsolstr.2013.06.001.
- Yuen, Y.P. and Kuang, J.S. (2015), "Nonlinear seismic responses and lateral force transfer mechanisms of RC frames with different infill configurations", Eng. Struct., 91, 125-140. https://doi.org/10.1016/j.engstruct.2015.02.031.
- Zhang, S., Yang, D., Sheng, Y., Garrity, S.W. and Xu, L. (2017), "Numerical modelling of FRP-reinforced masonry walls under in-plane seismic loading", Constr. Build. Mater., 134, 649-663. https://doi.org/10.1016/j.conbuildmat.2016.12.091.
- Zhao, B., Taucer, F. and Rossetto, T. (2009), "Field investigation on the performance of building structures during the 12 May 2008 wenchuan earthquake in China", Eng. Struct., 31(8), 1707-1723. https://doi.org/10.1016/j.engstruct.2009.02.039.
- Zhou, X., Du, J., Peng, Q. and Chen, P. (2019), "Hollow block masonry wall reinforced by built-in structural configuration: seismic behavior analysis", Soil Dyn. Earthq. Eng., 126, 105815. https://doi.org/10.1016/j.soildyn.2019.105815.