References
- Ali Rachedi, M., Benyoucef, S., Bouhadra, A., Bachir Bouiadjra, R., Sekkal, M. and Benachour, A. (2020), "Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation", Geomech. Eng., 22(1), 65-80. http://doi.org/10.12989/gae.2020.22.1.065.
- Asiri, S.A., Akbas, S.D. and Eltaher, M.A. (2020), "Damped dynamic responses of a layered functionally graded thick beam under a pulse load", Struct. Eng. Mech., 75(6), 713-722. http://doi.org/10.12989/sem.2020.75.6.713.
- Attia, M.A. (2017), "On the mechanics of functionally graded nanobeams with the account of surface elasticity", Int. J. Eng. Sci., 115, 73-101. https://doi.org/10.1016/j.ijengsci.2017.03.011.
- Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
- Avcar, M. and Mohammed, W.K.M. (2018), "Free vibration of functionally graded beams resting on Winkler-Pasternak foundation", Arab. J. Geosci., 11, 232. https://doi.org/10.1007/s12517-018-3579-2.
- Bachir Bouiadjra, R., Bachiri, A.,Benyoucef, S., Fahsi, B. and Bernard, F. (2020), "An investigation of the thermodynamic effect of FG beam on elastic foundation", Struct. Eng. Mech., 76(1), 115-127. https://doi.org/10.12989/sem.2020.76.1.115.
- Boulal, A., Bensattalah, T., Karas, A., Zidour, M., Heireche, H. and Adda Bedia, E.A. (2020), "Buckling of carbon nanotube reinforced composite plates supported by Kerr foundation using Hamilton's energy principle", Struct. Eng. Mech., 73(2), 209-223. https://doi.org/10.12989/sem.2020.73.2.209.
- Ebrahimi, F., Ghasemi, F. and Salari, E. (2016), "Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities", Meccanica, 51(1), 223-249. https://doi.org/10.1007/s11012-015-0208-y.
- Eltaher, M.A. and Akbas, S.D. (2020), "Transient response of 2D functionally graded beam structure", Struct. Eng. Mech., 75(3), 357-367. https://doi.org/10.12989/sem.2020.75.3.357.
- Hadji, L. and Avcar, M. (2021), "Free vibration analysis of FG porous sandwich plates under various boundary conditions", J. Appl. Comput. Mech., 7(2), 505-519, https://doi.org/10.22055/JACM.2020.35328.2628.
- Hashemi, S.H., Mehrabani, H. and Savadkoohi, A.A. (2015), "Exact solution for free vibration of coupled double viscoelastic graphene sheets by visco Pasternak medium", Compos. Part B., 78, 377-383. https://doi.org/10.1016/j.compositesb.2015.04.008.
- Huang, Y. (2020), "Bending and free vibrational analysis of bidirectional functionally graded beams with circular crosssection", Appl. Math. Mech.-Engl. Ed., 41(10), 1497-1516. https://doi.org/10.1007/s10483-020-2670-6.
- Huynh, T.A., Lieu, X.Q. and Lee, J. (2017), "NURBS-based modeling of bidirectional functionally graded Timoshenko beams for free vibration problem", Compos. Struct., 160, 1178-90. https://doi.org/10.1016/j.compstruct.2016.10.076.
- Jung, W.Y., Han, S.C. and Park, W.T. (2016), "Four-variable refined plate theory for forced vibration analysis of sigmoid functionally graded plates on elastic foundation", J. Mech. Sci., 111, 73-87. https://doi.org/10.1016/j.ijmecsci.2016.03.001.
- Karamanli, A. (2017), "Bending behaviour of two directional functionally graded sandwich beams by using a quasi-3d shear deformation theory", Compos. Struct., 174, 70-86. http://doi.org/10.1016/j.compstruct.2017.04.046.
- Karamanli, A. (2018), "Free vibration analysis of two directional functionally graded beams using a third order shear deformation theory", Compos. Struct., 189, 127-136. https://doi.org/10.1016/j.compstruct.2018.01.060.
- Katariya, P.V. and Panda, S.K. (2020), "Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect", Steel Compos. Struct., 34(2), 279-288. https://doi.org/10.12989/scs.2020.34.2.279.
- Kim., Y.W. (2005), "Temperature dependent vibration analysis of functionally graded rectangular plates", J. Sound Vib., 284(3), 531-549. https://doi.org/10.1016/j.jsv.2004.06.043.
- Lal, R. and Dangi, C. (2019), "Thermomechanical vibration of bidirectional functionally gradednon-uniform timoshenko nanobeam using nonlocal elasticity theory", Compos. B. Eng., 172, 724-42. https://doi.org/10.1016/j.compositesb.2019.05.076.
- Lei, J., He, Y., Li, Z., Guo, S. and Liu, D. (2019), "Postbuckling analysis of bi-directional functionally graded imperfect beams based on a novel third-order shear deformation theory", Compos. Struct., 209, 811-29. https://doi.org/10.1016/j.compstruct.2018.10.106.
- Madenci, E. (2019), "A refined functional and mixed formulation to static analyses of fgm beams", Struct. Eng. Mech., 69(4), 427-437. https://doi.org/10.12989/sem.2019.69.4.427.
- Mekerbi, M., Benyoucef, S., Mahmoudi, M., Tounsi, A., Bousahla, A.A. and Mahmoud, S.R. (2019), "Thermodynamic behavior of functionally graded sandwich plates resting on different elastic foundation and with various boundary conditions", J. Sandw. Struct. Mater., 1099636219851281. https://doi.org/10.1177/1099636219851281.
- Merzoug, M., Bourada, M., Sekkal, M., Ali Chaib dra, A., Belmokhtar, C., Benyoucef, S. and Benachour, A. (2020), "2D and quasi 3D computational models for thermoelastic bending of FG beams on variable elastic foundation: Effect of the micromechanical models", Geomech. Eng., 22(4), 361-374. https://doi.org/10.12989/gae.2020.22.4.361.
- Mirjavadi, S.S., Afshari, B.M., Shafiei, N., Hamouda, A.M.S. and Kazemi, M. (2017), "Thermal vibration of two-dimensional functionally graded (2D-FG) porous Timoshenko nanobeams", Steel Compos. Struct., 25(4), 415-26. http://doi.org/10.12989/scs.2017.25.4.415.
- Nejad, M.Z. and Hadi, A. (2016b), "Non-local analysis of free vibration of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 105, 1-11. https://doi.org/10.1016/j.ijengsci.2016.04.011.
- Nejad, M.Z. and Hadi, A. (2016c), "Eringen's non-local elasticity theory for bending analysis of bi-directional functionally graded Euler-Bernoulli nano-beams", Int. J. Eng. Sci., 106, 1-9. https://doi.org/10.1016/j.ijengsci.2016.05.005.
- Nejad, M.Z., Hadi, A. and Rastgoo, A. (2016a), "Buckling analysis of arbitrary two-directional functionally graded Euler-Bernoulli nano-beams based on nonlocal elasticity theory", Int. J. Eng. Sci., 103, 1-10. https://doi.org/10.1016/j.ijengsci.2016.03.001.
- Nguyen, D.K., Nguyen, Q.H., Tran, T.T. and Bui, V.T. (2017), "Vibration of bi-dimensional functionally graded timoshenko beams excited by a moving load", Acta Mechanica, 228(1), 141-155. https://doi.org/10.1007/s00707-016-1705-3.
- Nguyen, T.T. and Lee, J. (2018), "Flexural-torsional vibration and buckling of thin-walled bi-directional functionally graded beams", Compos. B. Eng., 154, 351-62. https://doi.org/10.1016/j.compositesb.2018.08.069.
- Oner, E., Yaylaci, M. and Birinci, A. (2015), "Analytical solution of a contact problem and comparison with the results from FEM", Struct. Eng. Mech., 54(4), 607-622. https://doi.org/10.12989/sem.2015.54.4.607.
- Pradhan, S.C. and Murmu, T. (2009), "Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method", J. Sound Vib., 321, 342-362. https://doi.org/10.1016/j.jsv.2008.09.018.
- Pydah, A. and Sabale, A. (2017), "Static analysis of bi-directional functionally graded curved beams", Compos. Struct., 160, 867-876. https://doi.org/10.1016/j.compstruct.2016.10.120.
- Rezaiee-Pajand, M. and Mokhtari, M. (2019), "A novel meshless particle method for nonlocal analysisof two-directional functionally graded nanobeams", J. Brazil. Soc. Mech. Sci. Eng., 41, 303. https://doi.org/10.1007/s40430-019-1799-3.
- Selmi, A. (2020), "Exact solution for nonlinear vibration of clamped-clamped functionally graded buckled beam", Smart Struct. Syst., 26(3), 361-371. https://doi.org/10.12989/sss.2020.26.3.361.
- Shafiei, N., Mirjavadi, S.S., Mohasel Afshari, B., Rabby, S. and Kazemi, M. (2017), "Vibration of two dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams", Comput. Meth. Appl. Mech. Eng., 322, 615-632. https://doi.org/10.1016/j.cma.2017.05.007.
- Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Tech., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004.
- Sobhy, M. (2015), "Thermoelastic response of FGM plates with temperature-dependent properties resting on variable elastic foundations", J. Appl. Mech., 7(6), 1550082. https://doi.org/10.1142/S1758825115500829.
- Tang, Y., Lv, X.F. and Yang, T.Z. (2019), "Bi-directional functionally graded beams: asymmetric modes and nonlinear free vibration", Compos. Part B-Eng., 156, 319-331. https://doi.org/10.1016/j.compositesb.2018.08.140.
- Tanga, Y. and Ding, Q. (2019), "Nonlinear vibration analysis of a bi-directional functionally graded beam underhygro-thermal loads", Compo. Struct., 225, 111076. https://doi.org/10.1016/j.compstruct.2019.111076.
- Tran, T.T. and Nguyen, D.K. (2018), "Free vibration analysis of 2-DFGM beams in thermal environment based on a new third-order shear deformation theory", Vietnam J. Mech., 40(2), 121-140. https://doi.org/10.15625/0866-7136/10503.
- Trinh, L.C., Vo, T.P., Thai, H.T. and Nguyen, T.K. (2018), "Size-dependent vibration of bi-directional functionally graded microbeams with arbitrary boundary conditions", Compos. B Eng., 134, 225-245. https://doi.org/10.1016/j.compositesb.2017.09.054.
- Vinyas, M. (2020), "On frequency response of porous functionally graded magneto-electro-elastic circular and annular plates with different electro-magnetic conditions using HSDT", Compos. Struct., 240, 112044. https://doi.org/10.1016/j.compstruct.2020.112044.
- Wang, Z.H., Wang, X.H., Xu, G.D., Cheng, S. and Zeng, T. (2016), "Free vibration of two-directional functionally graded beams", Compo. Struct., 135, 191-198. http://doi.org/10.1016/j.compstruct.2015.09.013.
- Winkler, E. (1867), "Die Lehre von der Elasticitaet und Festigkei", Prag, Dominicus.
- Yaylaci, M. (2016), "The investigation crack problem through numerical analysis", Struct. Eng. Mech., 57(6), 1143-1156. https://doi.org/10.12989/sem.2016.57.6.1143.
- Yaylaci, M. and Avcar, M. (2020), "Finite element modeling of contact between an elastic layer and two elastic quarter planes", Comput. Concrete, 26(2), 107-114. https://doi.org/10.12989/cac.2020.26.2.107.
- Yaylaci, M. and Birinci, A. (2013), "The receding contact problem of two elastic layers supported by two elastic quarter planes", Struct. Eng. Mech., 48(2), 241-255. https://doi.org/10.12989/sem.2013.48.2.241.
- Yaylaci, M., Adiyaman, E., Oner, E. and Birinci, A. (2020), "Examination of analytical and finite element solutions regarding contact of a functionally graded layer", Struct. Eng. Mech., 76(3), 325-336. http://doi.org/10.12989/sem.2020.76.3.325.
- Yaylaci, M., Adiyaman, E., Oner, E. and Birinci, A. (2021a). "Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM", Comput. Concrete, 27(3), 199-210. http://doi.org/10.12989/cac.2021.27.3.199.
- Yaylaci, M., Eyuboglu, A., Adiyaman, G., Uzun Yaylaci, E., Oner, E. and Birinci, A. (2021b), "Assessment of different solution methods for receding contact problems in functionally graded layered mediums", Mech. Mater., 154, 103730. https://doi.org/10.1016/j.mechmat.2020.103730.
- Yaylaci, M., Terzi, C. and Avcar, M. (2019), "Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane", Struct. Eng. Mech., 72(6), 775-783. https://doi.org/10.12989/sem.2019.72.6.775.
- Yaylaci, U.E., Yaylaci, M., Olmez, H. and Birinci, A. (2020). "Artificial neural network calculations for a receding contact problem", Comput. Concrete, 25(6), 551-563. https://doi.org/10.12989/cac.2020.25.6.551.
- Younesian, D., Hosseinkhani, A., Askari, H. and Esmailzadeh, E. (2019), "Elastic and viscoelastic foundations: a review on linear and nonlinear vibration modeling and applications", Nonlin. Dyn., 97, 853-895. https://doi.org/10.1007/s11071-019-04977-9.
- Yu, T., Zhang, J., Hu, H. and Bui, T.Q. (2019), "A novel size-dependent quasi-3d isogeometric beam model for two-directional fgmicrobeams analysis", Compos. Struct., 211, 76-88. https://doi.org/10.1016/j.compstruct.2018.12.014.