DOI QR코드

DOI QR Code

Study on the packing and shear characteristics of granular mixtures via the DEM

  • Gong, Jian (College of Civil Engineering and Architecture, Guangxi University) ;
  • Cheng, Lipo (College of Civil Engineering and Architecture, Guangxi University) ;
  • Zhao, Lianheng (School of Civil Engineering, Central South University) ;
  • Zou, Jinfeng (School of Civil Engineering, Central South University) ;
  • Li, Liang (School of Civil Engineering, Central South University) ;
  • Nie, Zhihong (School of Civil Engineering, Central South University)
  • Received : 2019.03.21
  • Accepted : 2021.10.12
  • Published : 2021.11.10

Abstract

Granular mixtures are often encountered in civil engineering, but the micromechanical implications of their packing and shear characteristics are still unclear. In this study, the packing and shear characteristics of binary mixtures were studied using a three-dimensional discrete element method (DEM). The binary mixtures contained realistic gravel-shaped coarse particles and one of two tested fine particle shapes (namely, spherical or elongated particles). The densest isotropic samples were generated by using a frictionless condition. The initial void ratio and particle contacts of the packed samples were examined. This study shows that the particle shape of the fines affects the relationship between the initial void ratio and fines content (FC). The contact types in binary mixtures can be classified as coarse particle-coarse particle (CC contacts), coarse particle-fine particle (CF contacts) and fine particle-fine particle (FF contacts). A microscopic investigation of the particle contacts indicated that the coarse and fine particle shapes influenced the partial coordination numbers of the CC and CF contacts and the CF and FF contacts, respectively. All the samples were then subjected to numerical triaxial compression tests. The results show that the particle shape of the fines affected the magnitudes and evolutions of the peak (φp) and critical (φc) friction angles of the binary mixtures. Finally, an anisotropic analysis was performed to highlight the microscopic mechanisms that cause the shear strength to be dependent on the particle shape and FC.

Keywords

Acknowledgement

This research is supported by the National Natural Science Foundation of China (No. 51809292, 51478481 and 51878668), Postdoctoral Fund of Central South University (No. 205455) and Beijing Municipal Science and Technology Project: Research and Application of Design and Construction Technology of Railway Engineering Traveling the Rift Valley (No. Z181100003918005). The authors would like to express their appreciation to the financial assistance.

References

  1. Abbireddy, C.O.R. and Clayton, C.R.I. (2010), "Varying initial void ratios for DEM simulations", Geotechnique, 60(6), 497-502. https://doi.org/10.1680/geot.2010.60.6.497.
  2. Agnolin, I. and Roux, J.N. (2008), "On the elastic moduli of three-dimension assemblies of spheres: Characterization and modeling of fluctuations in the particle displacement and rotation", Int. J. Solids Struct., 3(45), 1101-1123. https://doi.org/10.1016/j.ijsolstr.2007.07.016.
  3. Antony S J, Kruyt N P. (2009), "Role of interparticle friction and particle-scale elasticity in the shear-strength mechanism of three-dimensional granular media", Phys. Rev. E., 79, 031308. https://doi.org/10.1103/PhysRevE.79.031308.
  4. Azema, E. and Radjai, F. (2010a), "Stress-strain behavior and geometrical properties of packings of elongated particles", Phys. Rev. E., 81, 05130451. https://doi.org/10.1103/PhysRevE.81.051304.
  5. Azema, E., Preechawuttipong, I. and Radjai, F. (2016a), "Binary mixtures of disks and elongated particles: texture and mechanical properties", Phys. Rev. E., 94, 0429014. https://doi.org/10.1103/PhysRevE.94.042901.
  6. Berger, K.J. and Hrenya, C.M. (2014), "Challenges of DEM: ii. Wide particle size distributions", Powder Technol., 264, 627-633. https://doi.org/10.1016/j.powtec.2014.04.096.
  7. Biazzo, I., Caltagirone, F., Parisi, G. and Zamponi, F. (2009), "Theory of amorphous packings of binary mixtures of hard spheres", Phys. Rev. Lett., 102, 19570119. https://doi.org/10.1103/PhysRevLett.102.195701.
  8. Bolton, M.D. (1986), "The strength and dilatancy of sands", Geotechnique, 36(1), 65-78. https://doi.org/10.1680/geot.1986.36.1.65.
  9. Chang, W. and Phantachang, T. (2016), "Effects of gravel content on shear resistance of gravelly soils", Eng. Geol., 207, 78-90. https://doi.org/10.1016/j.enggeo.2016.04.015.
  10. Cheung, G. and O'Sullivan, C. (2008), "Effective simulation of flexible lateral boundaries in two- and three-dimensional DEM simulations", Particuology, 6, 483-500. https://doi.org/10.1016/j.partic.2008.07.018.
  11. Christoffersen, J., Mehrabadi, M.M. and Nemat-Nasser, S. (1981), "A micromechanical description of granular material behavior", Transactions ASME J. Appl. Mech., 48(2), 339-344. https://doi.org/10.1115/1.3157619.
  12. Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29, 47-65. https://doi.org/10.1680/geot.1979.29.1.47.
  13. Da Cruz, F., Emam, S., Prochnow, M., Roux, J.N. and Chevoir, F. (2005), "Rheophysics of dense granular materials: discrete simulation of plane shear flows", Phys. Rev. E., 72, 02130921. https://doi.org/10.1103/PhysRevE.72.021309.
  14. Dai BB, Yang J, Gu XQ, Zhang Wei. (2019), "A numerical analysis of the equivalent skeleton void ratio for silty sand", Geomech. Eng., 17(1), 19-30. https://doi.org/10.12989/gae.2019.17.1.019.
  15. Dai, BB and Yang, J. (2017), "Shear strength of assemblies of frictionless particles", Int. J. Geomech., 17, 0401710211. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001005.
  16. Dai, BB, Yang, J. and Luo, X. (2015), "A numerical analysis of the shear behavior of granular soil with fines", Particuology, 21, 160-172. https://doi.org/10.1016/j.partic.2014.08.010.
  17. Dai, BB., Yang, J. and Zhou, C.Y. (2016), "Observed effects of interparticle friction and particle size on shear behavior of granular materials", Int. J. Geomech., 16, 040150111. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000520.
  18. De Frias Lopez, R., Ekblad, J. and Silfwerbrand, J. (2016), "Resilient properties of binary granular mixtures: A numerical investigation", Comput. Geotech., 76, 222-233. https://doi.org/10.1016/j.compgeo.2016.03.002.
  19. De Frias Lopez, R., Silfwerbrand, J., Jelagin, D. and Birgisson, B. (2016), "Force transmission and soil fabric of binary granular mixturese", Geotechnique, 66(7), 578-583. https://doi.org/10.1680/jgeot.14.P.199.
  20. Goldenberg, C. and Goldhirsch, I. (2005), "Friction enhances elasticity in granular solids", Nature, 435(7039), 188-191. https://doi.org/10.1038/nature03497.
  21. Gong, J, Zou J F, Zhao L H, Nie Z H. (2019b), "New insights into the effect of interparticle friction on the critical state friction angle of granular materials", Comput. Geotech., 113, 103105. https://doi.org/10.1016/j.compgeo.2019.103105.
  22. Gong, J. and Liu, J. (2017a), "Analysis of the thresholds of granular mixtures using the discrete element method", Geomech. Eng., 12(4), 639-655. https://doi.org/10.12989/gae.2017.12.4.639.
  23. Gong, J. and Liu, J. (2017b), "Effect of aspect ratio on triaxial compression of multisphere ellipsoid assemblies simulated using a discrete element method", Particuology, 32, 49-62. https://doi.org/10.1016/j.partic.2016.07.007.
  24. Gong, J., Nie Z H, Zhu Y G, Liang Z Y, Wang X. (2019a), "Exploring the effects of particle shape and content of fines on the shear behavior of sand-fines mixtures via the DEM", Comput. Geotech., 106, 161-176. https://doi.org/10.1016/j.compgeo.2018.10.021.
  25. Gu, XQ, Hu, J. and Huang, M. (2017), "Anisotropy of elasticity and fabric of granular soils", Granul. Matter, 19(2), 33. https://doi.org/10.1007/s10035-017-0717-6.
  26. Gu, XQ, Hu, J., Huang, M. and Yang, J. (2018), "Discrete element analysis of the k-0 of granular soil and its relation to small strain shear stiffness", Int. J. Geomech., 18, 060180033. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001102.
  27. Gu, XQ, Huang, M. and Qian, J. (2014), "DEM investigation on the evolution of microstructure in granular soils under shearing", Granul. Matter, 16(1), 91-106. https://doi.org/10.1007/s10035-013-0467-z.
  28. Gu, XQ, Zhang JQ, Huang X. (2020), "DEM analysis of monotonic and cyclic behaviors of sand based on critical state soil mechanics framework", Comput. Geotech., 128, 103787. https://doi.org/10.1016/j.compgeo.2020.103787.
  29. Guarin, A., Roque, R., Kim, S. and Sirin, O. (2013), "Disruption factor of asphalt mixtures", Int. J. Pavement Eng., 14(5), 472-485. https://doi.org/10.1080/10298436.2012.727992.
  30. Guo, N. and Zhao, J. (2013), "The signature of shear-induced anisotropy in granular media", Comput. Geotech., 47, 1-15. https://doi.org/10.1016/j.compgeo.2012.07.002.
  31. Hall, S.A., Bornert, M., Desrues, J., Pannier, Y., Lenoir, N., Viggiani, G. and Besuelle, P. (2010), "Discrete and continuum analysis of localised deformation in sand using x-ray mu ct and volumetric digital image correlation", Geotechnique, 60(5), 315-322. https://doi.org/10.1680/geot.2010.60.5.315.
  32. Harehdasht, S.A., Karray, M., Hussien, M.N. and Chekired, M. (2017), "Influence of particle size and gradation on the stress-dilatancy behavior of granular materials during drained triaxial compression", Int. J. Geomech., 17, 040170779. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000951.
  33. Itasca (2014), User's manual for pfc3d; Itasca consulting Group Inc.; Minneapolis, USA
  34. Jamiolkowski, M., Kongsukprasert, L. and Lo Presti, D. (2004), "Characterization of gravelly geomaterials", Proceedings of The Fifth International Geotechnical Conference, Bangkok, Thailand, November.
  35. Krishna, P. and Pandey, D. (1981), "Close-packed structures", International Union of Crystallography Commission on Crystallographic Teaching, First Series Pamphlets, No 5., University College Cardiff Press, Cardiff, 1981.
  36. Kristiansen, K.D., Wouterse, A. and Philipse, A. (2005), "Simulation of random packing of binary sphere mixtures by mechanical contraction", Physica A, 358(2-4), 249-262. https://doi.org/10.1016/j.physa.2005.03.057.
  37. Kuenza, K., Towhata, I., Orense, R.P. and Wassan, T.H. (2004), "Undrained torsional shear tests on gravelly soils", Landslides, 1(3), 185-194. https://doi.org/10.1007/s10346-004-0023-3.
  38. Lade, P.V., Liggio, C.D. and Yamamuro, J.A. (1998), "Effects of non-plastic fines on minimum and maximum void ratios of sand", Geotech. Test J., 21(4), 336-347. https://doi.org/10.1520/GTJ11373J.
  39. Lu, Y., Tan, Y., Li, X. and Liu, C. (2017), "Methodology for simulation of irregularly shaped gravel grains and its application to DEM modeling", J. Comput. Civil Eng., 3, 040170235. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000676.
  40. Meng, L., Lu, P. and Li, S. (2014), "Packing properties of binary mixtures in disordered sphere systems", Particuology, 16, 155-166. https://doi.org/10.1016/j.partic.2014.02.010.
  41. Minh, N.H. and Cheng, Y.P. (2013), "A DEM investigation of the effect of particle-size distribution on one-dimensional compression", Geotechnique, 63(1), 44-53. https://doi.org/10.1680/geot.10.P.058.
  42. Minh, N.H., Cheng, Y.P. and Thornton, C. (2014), "Strong force networks in granular mixtures", Granul Matter, 16(1), 69-78. https://doi.org/10.1007/s10035-013-0455-3.
  43. Ng, T., Zhou, W. and Chang, X. (2017), "Effect of particle shape and fine content on the behavior of binary mixture", J. Eng. Mech., 143, C40160081SI. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001070.
  44. Ng, T., Zhou, W., Ma, G. and Chang, X. (2018), "Macroscopic and microscopic behaviors of binary mixtures of different particle shapes and particle sizes", Int J Solids Struct, 135, 74-84. https://doi.org/10.1016/j.ijsolstr.2017.11.011.
  45. Peng, Y. and Bao, J. (2018), "Comparative study of 2d and 3d micromechanical discrete element modeling of indirect tensile tests for asphalt mixtures", Int. J. Geomech., 18, 040180466. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001155.
  46. Perez, J.L., Kwork, C.Y., Huang, X. and Hanley, K.J. (2016), "Assessing the quasi-static conditions for shearing in granular media within the critical state soil mechanics framework", Soils Found, 1(56), 152-159. https://doi.org/10.1016/j.sandf.2016.01.013.
  47. Pinson, D., Zou, R.P., Yu, A.B., Zulli, P. and McCarthy, M.J. (1998), "Coordination number of binary mixtures of spheres", J. Phys. D Appl. Phys., 31, 457-462. https://doi.org/10.1088/0022-3727/31/4/016.
  48. Polito, C.P. and Martin, J.R. (2001), "Effects of nonplastic fines on the liquefaction resistance of sands", J. Geotech. Geoenviron., 127(5), 408-415. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:5(408).
  49. Rodriguez, J., Allibert, C.H. and Chaix, J.M. (1986), "A computer method for random packing of spheres of unequal size", Powder Technol., 47(1), 25-33. https://doi.org/10.1016/0032-5910(86)80004-3.
  50. Rothenburg, L. and Bathurst, R.J. (1989), "Analytical study of induced anisotropy in idealized granular materials", Geotechnique, 39(4), 601-614. https://doi.org/10.1680/geot.1989.39.4.601.
  51. Satake, M. (1982), "Fabric tensor in granular materials", Deformation and Failure of Granular Materials, International Union of Theoretical and Applied Mechanics Symposium on Deformation and Failure of Granular Materials, Delft, Netherlands, August-September. 63-68.
  52. Shire, T. and O'Sullivan, C. (2013), "Micromechanical assessment of an internal stability criterion", Acta Geotech., 8(1), 81-90. https://doi.org/10.1007/s11440-012-0176-5.
  53. Shire, T., O'Sullivan, C. and Hanley, K.J. (2016), "The influence of fines content and size-ratio on the micro-scale properties of dense bimodal materials", Granul. Matter, 18(3), 1-10. https://doi.org/10.1007/s10035-016-0654-9.
  54. Suzuki, M., Kada, H. and Hirota, M. (1999), "Effect of size distribution on the relation between coordination number and void fraction of spheres in a randomly packed bed", Adv. Powder Technol., 10(4), 353-365. https://doi.org/10.1163/156855299X00208.
  55. Taghavi, R. (2011), "Automatic clump generation based on midsurface", Continuum and Distinct Element Modeling in Geomechanics, Proceedings of 2nd International FLAC/DEM Symposium, Melbourne, February, 791-797.
  56. Thevanayagam, S., Shenthan, T., Mohan, S. and Liang, J. (2002), "Undrained fragility of clean sands, silty sands and sandy silts", J. Geotech. Geoenviron, 128(10), 849-859. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(849).
  57. Thornton, C. (2000), "Numerical simulations of deviatoric shear deformation of granular media", Geotechnique, 50(1), 43-53. https://doi.org/10.1680/geot.2000.50.1.43.
  58. Ueda, T., Matsushima, T. and Yamada, Y. (2011), "Effect of particle size ratio and volume fraction on shear strength of binary granular mixture", Granul. Matter, 13(6), 731-742. https://doi.org/10.1007/s10035-011-0292-1.
  59. Vallejo, L.E. (2001), "Interpretation of the limits in shear strength in binary granular mixtures", Can. Geotech. J., 38(5), 1097-1104. https://doi.org/10.1139/t01-029.
  60. Voivret, C., Radjai, F., Delenne, J.Y. and El Youssoufi, M.S. (2009), "Multiscale force networks in highly polydisperse granular media", Phys. Rev. Lett., 102, 17800117. https://doi.org/10.1103/PhysRevLett.102.178001/
  61. Wang, J J., Qiu, ZF., Deng WJ. (2016), "Effects of mudstone particle content on shear strength of a crushed sandstone-mudstone particle mixture", Marine Georesources Geotechnol., 34(4), 395-402. https://doi.org/10.1080/1064119X.2014.961621.
  62. Wang, JJ., Zhang, HP., Deng, DP. and Liu, MW. (2013), "Effects of mudstone particle content on compaction behavior and particle crushing of a crushed sandstone-mudstone particle mixture", Eng. Geol., 167, 1-5. https://doi.org/10.1016/j.enggeo.2013.10.004.
  63. Wang, L., Park, J. and Fu, Y. (2007), "Representation of real particles for DEM simulation using x-ray tomography", Constr. Build Mater., 21(2), 338-346. https://doi.org/10.1016/j.conbuildmat.2005.08.013.
  64. Wang, L., Park, J. and Fu, Y. (2007), "Representation of real particles for DEM simulation using X-ray tomography", Constr. Build. Mater., 21(2), 338-346. https://doi.org/10.1016/j.conbuildmat.2005.08.013.
  65. Weatman, A.E.R. (1936), "The packing of particles: Empirical equation for intermediate diameter ratios", J. Americal Ceramic Soc., 19(1-12), 127-129. https://doi.org/10.1111/j.1151-2916.1936.tb19809.x.
  66. Wei, H., Xu, W., Xu, X., Meng, Q. and Wei, C. (2018), "Mechanical properties of strongly weathered rock-soil mixtures with different rock block contents", Int. J. Geomech., 18, 040180265. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001131.
  67. Xu, W., Hu, L. and Gao, W. (2016), "Random generation of the meso-structure of a soil-rock mixture and its application in the study of the mechanical behavior in a landslide dam", Int. J. Rock Mech. Min., 86, 166-178. https://doi.org/10.1016/j.ijrmms.2016.04.007.
  68. Xu, W., Xu, Q. and Hu, R. (2011), "Study on the shear strength of soil-rock mixture by large scale direct shear test", Int. J. Rock Mech. Min., 48(8), 1235-1247. https://doi.org/10.1016/j.ijrmms.2011.09.018.
  69. Xu, W.J., Hu, R.L. and Tan, R.J. (2007), "Some geomechanical properties of soil-rock mixtures in the hutiao gorge area, China", Geotechnique, 57(3), 255-264. https://doi.org/10.1680/geot.2007.57.3.255.
  70. Yang, S.L., Lacasse, S. and Sandven, R.F. (2006), "Determination of the transitional fines content of mixtures of sand and nonplastic fines", Geotech. Test J., 29(2), 102-107. https://doi.org/10.1520/GTJ14010.
  71. Yideti, T.F., Birgisson, B., Jelagin, D. and Guarin, A. (2013), "Packing theory-based framework to evaluate permanent deformation of unbound granular materials", Int. J. Pavement Eng., 14(3), 309-320. https://doi.org/10.1080/10298436.2012.736620.
  72. Yin, Z., Zhao, J. and Hicher, P. (2014), "A micromechanics-based model for sand-silt mixtures", Int. J. Solids Struct., 51(6), 1350-1363. https://doi.org/10.1016/j.ijsolstr.2013.12.027.
  73. Yu, A.B. and Standish, N. (1988), "An analytical-parametric theory of the random packing of particles", Powder Technol., 3(55), 171-186. https://doi.org/10.1016/0032-5910(88)80101-3.
  74. Zhang, J. and Yang, J. (2017), "Experimental and numerical investigation of dilation behavior of asphalt mixture", Int. J. Geomech., 17(2). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000738
  75. Zhou, W., Xu, K., Ma, G., Yang, L. and Chang, X. (2016), "Effects of particle size ratio on the macro- and microscopic behaviors of binary mixtures at the maximum packing efficiency state", Granul. Matter, 18(4), 1-13. https://doi.org/10.1007/s10035-016-0678-1.