DOI QR코드

DOI QR Code

Study on mechanical properties and damage features of Rock-Coal-Rock combination models with defects and fillings

  • Liu, Han D. (Henan Key Laboratory of Geomechanics and Structural Engineering, North China University of Water Resourcesand Electric Power) ;
  • Liu, Shuai (Henan Key Laboratory of Geomechanics and Structural Engineering, North China University of Water Resourcesand Electric Power) ;
  • Xia, Zhi G. (School of Mining Engineering, University of Science and Technology Liaoning) ;
  • Liu, Jing J. (College of Geosciences and Engineering, North China University of Water Resources and Electric Power) ;
  • Guo, Hao (Liaoning Metallurgical Geological Exploration Team 405 Co., Ltd) ;
  • Yuan, Yong T. (Hami energy security monitoring center of Xinjiang Uygur Autonomous Region)
  • Received : 2021.04.15
  • Accepted : 2021.10.22
  • Published : 2021.11.10

Abstract

In order to study the damage features and mechanical properties of rock-coal-rock combination (RCR) models with defects and filling material, the 2-Dimensional Particle Flow Code (PFC2D) is used for the numerical simulation models. The variations of stress-strain, caused by uniaxial compression, are investigated. The distribution of the stress and displacement fields in horizontal and vertical directions of the models after failure is analyzed. The damage characteristics are discussed from the microscopic aspects of crack development, acoustic emission and contact force distribution. The results show the following: (1) The defects significantly affect the mechanical properties, the propagation of internal cracks, the evolution of displacement and stress and the distribution of stress concentration area. The peak stress-strain and elastic modulus of RCR models with defects decrease as the number of square holes increases. The more defects, the earlier new cracks appear in the coal body and the easier the defective models fail. (2) After filling the holes of the defective models, the number of cracks, crack initiation stress, elastic modulus and peak stress-strain are significantly larger than those of the corresponding model with holes, meaning that they can sustain larger load. The displacement and stress fields of the filled models are similar to the ones of the complete combination model. Hence, the filling material can enhance the mechanical properties of the defective RCR combination models.

Keywords

Acknowledgement

The research described in this paper was financially supported by the National Natural Science Foundation of China (NO. U1704243), Key Scientific Research Project Plan of Henan Higher Education Institutions (NO.17A410002), The Doctoral Innovation Fund of North China University of Water Resource and Electric Power, and The Project of High Level Talents in North China University of Water Resource and Electric Power (NO.201518).

References

  1. Aksoy, C.O., Ogul, K., Topal, I., Ozer, S.C., Ozacar, V. and Posluk, E. (2012), "Numerical modeling of non-deformable support in swelling and squeezing rock", Int. J. Rock Mech. Min. Sci., 52, 61-70. https://doi.org/10.1016/j.ijrmms.2012.02.008.
  2. Ayatollahi, M.R. and Akbardoost J. (2014), "Size and Geometry Effects on Rock Fracture Toughness: Mode I Fracture", Rock Mech. Rock Eng., 47, 677-687. https://doi.org/10.1007/s00603-013-0430-7.
  3. Bahaaddini, M., Sharrock, G. and Hebblewhite, B.K. (2013), "Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression", Comput. Geotech., 49, 206-225. https://doi.org/10.1016/j.compgeo.2012.10.012.
  4. Bahrani, N. and Kaiser, P.K. (2016), "Numerical investigation of the influence of specimen size on the unconfined strength of defected rocks", Comput. Geotech., 77, 56-67. https://doi.org/10.1016/j.compgeo.2016.04.004.
  5. Brandtner-Hafner, M. (2021), "Structural Safety Evaluation of Adhesive Bonds: A Fracture Analytical Approach", Eng. Fail. Anal., 123, 105289. https://doi.org/10.1016/j.engfailanal.2021.105289.
  6. Castro-Filgueira, U., Alejano, L.R., Arzua, J. and Ivars, D.M. (2017), "Sensitivity analysis of the micro-parameters used in a PFC analysis towards the mechanical properties of rocks", Proc. Eng., 191, 488-495. https://doi.org/10.1016/j.proeng.2017.05.208.
  7. Cauvin, A. and Testa, R.B. (1999), "Damage mechanics: Basic variables in continuum theories", Int. J. Solids Struct., 36, 747-761. https://doi.org/ 10.1016/S0020-7683(98)00044-4.
  8. Chen, S.J., Xia, Z.G. and Feng, F. (2020), "Numerical simulation of strength, deformation, and failure characteristics of rock with fissure hole defect", Adv. Mater. Sci. Eng., 2020, 7048645. https://doi.org/10.1155/2020/7048645.
  9. Cundall, P.A. and Strack, O.D. (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47.
  10. Eberhardt, E., Stead, D.,Stimpson, B. (1998), "Identifying crack initiation and propagation thresholds in brittle rock", Can. Geotech. J., 35(2), 222-233. https://doi.org/10.1139/cgj-35-2-222.
  11. Esterhuizen, G.S., Dolinar, D.R.and Ellenberger, J.L. (2011), "Pillar strength in underground stone mines in the United States", Int. J. Rock Mech. Min. Sci., 48, 42-50. https://doi.org/10.1016/j.ijrmms.2010.06.003.
  12. Fairhurst, C.E. and Hudson, J.A. (1999), "Draft ISRM suggested method for the complete stressstrain curve for the intact rock in uniaxial compression", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 36(3), 281-289. https://doi.org/10.1016/S0148-9062(99)00006-6.
  13. Fakhimi, A., Carvalho, F., Ishida, T. and Labuz, J.F. (2002), "Simulation of failure around a circular opening in rock", Int. J. Rock Mech. Min. Sci., 39(2), 507-515. https://doi.org/10.1016/S1365-1609(02)00041-2.
  14. Gui, Y.L., Zhao, Z.Y., Zhang, C. and Ma, S.Q. (2017), "Numerical investigation of the opening effect on the mechanical behaviours in rocks under uniaxial loading using hybrid continuum discrete element method", Comput. Geotech., 90, 55-72. https://doi.org/10.1016/j.compgeo.2017.05.021.
  15. Guo, W.Y., Tan, Y.L., Yu, F.H., Zhao, T.B., Hu, S.C., Huang, D.M. and Qin, Z. (2018), "Mechanical behavior of rock-coal-rock specimens with different coal thicknesses", Geomech. Eng., 15(4), 1017-1027. https://doi.org/10.12989/gae.2018.15.4.1017.
  16. Hadjigeorgiou, J., Esmaieli, K. and Grenon, M. (2009), "Stability analysis of vertical excavations in hard rock by integrating a fracture system into a PFC model", Tunn. Undergr. Space Technol., 24, 296-308. https://doi.org/10.1016/j.tust.2008.10.002.
  17. Haimson, B. and Kovacich, J. (2003), "Borehole instability in high-porosity Berea sandstone and factors affecting dimensions and shape of fracture-like breakouts", J. Eng. Geol., 69, 219-231. https://doi.org/10.1016/S0013-7952(02)00283-1.
  18. Hawkes, I. and Mellor, M. (1970), "Uniaxial testing in rock mechanics laboratories", Eng. Geol., 4, 177-285. https://doi.org/10.1016/0013-7952(70)90034-7.
  19. Hazzard, J.F. and Young, R.P. (2000), "Simulating acoustic emissions in bonded-particle models of rock", Int. J. Rock Mech. Min. Sci., 37(5), 867-872. https://doi.org/10.1016/S1365-1609(00)00017-4.
  20. Helgeson, D.E. and Aydin, A. (1991), "Characteristics of joint propagation across layer interfaces in sedimentary rocks", J. Struct. Geol., 13(8), 897-911. https://doi.org/10.1016/0191-8141(91)90085-W.
  21. Hillerborg, A., Modeer, M. and Petersson, P.E. (1976), "Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements", Cement Concrete Res., 6, 773-782. https://doi.org/10.1016/0008-8846(76)90007-7.
  22. Hillerborg, A. (1985), "The theoretical basis of a method to determine the fracture energy GF of concrete", Mater. Struct., 18, 291-296. https://doi.org/10.1007/BF02472919.
  23. Holt, R.M., Kjolaas J., Larsen, I., Li, L., Pillitteri, A.G. and Sonstebo, E.F. (2005), "Comparison between controlled laboratory experiments and discrete particle simulations of the mechanical behaviour of rock", Int. J. Rock Mech. Min. Sci., 42, 985-995. https://doi.org/10.1016/j.ijrmms.2005.05.006.
  24. Huang, F., Zhu, H.H., Xu, Q.W., Cai, Y.C. and Zhuang, X.Y. (2013), "The effect of weak interlayer on the failure pattern of rock mass around tunnel-scaled model tests and numerical analysis", Tun. Under. Sp. Tech., 35, 207-218. http://dx.doi.org/10.1016/j.tust.2012.06.014.
  25. Huang, Y.H., Yang, S.Q., Ranjith P.G. and Zhao, J. (2017), "Strength failure behavior and crack evolution mechanism of granite containing pre-existing non-coplanar holes: Experimental study and particle flow modeling", Comput. Geotech., 88, 182-198. http://dx.doi.org/10.1016/j.compgeo.2017.03.015.
  26. International Society for Rock Mechanics (ISRM) (1981), "Suggested methods for the quantitative description of discontinuities in rock masses", Rock Characterization, Testing and Monitoring-ISRM Suggested Methods, Pergamon Press, Oxford, 3-52.
  27. Janeiro, R.P. and Einstein, H.H. (2010), "Experimental study of the cracking behavior of specimens containing inclusions (under uniaxial compression)", Int. J. Fract. Eng., 164(1), 83-102. https://doi.org/10.1007/s10704-010-9457-x.
  28. Jespersen, C., MacLaughlin, M., and Hudyma, N. (2010), "Strength, deformation modulus and failure modes of cubic analog specimens representing macroporous rock", Int. J. Rock Mech. Min. Sci., 47, 1349-1356. https://doi.org/10.1016/j.ijrmms.2010.08.015.
  29. Kim, J.S., Lee, K.S., Cho, W.J., Choi, H.J. and Cho, G.C. (2015), "A comparative evaluation of stress-strain and acoustic emission methods for quantitative damage assessments of brittle rock", Rock Mech. Rock Eng., 48, 495-508. https://doi.org/10.1007/s00603-014-0590-0.
  30. Klein, E. and Reuschle, T. (2004), "A pore crack model for the mechanical behaviour of porous granular rocks in the brittle deformation regime", Int. J. Rock Mech. Min. Sci., 41, 975-986. https://doi.org/10.1016/j.ijrmms.2004.03.003.
  31. Komijani, M., Gracie, R. and Yuan, Y. (2020), "Simulation of fracture propagation induced acoustic emission in porous media", Eng. Fract. Mech., 229, 106950. https://doi.org/10.1016/j.engfracmech.2020.106950.
  32. Komijani, M. and Gracie, R. (2019), "Enriched mixed finite element models for dynamic analysis of continuous and fractured porous media", Comput. Methods Appl. Mech. Eng., 343, 74-99. https://doi.org/10.1016/j.cma.2018.08.011.
  33. Komurlu, E., Kesimal, A. and Demir, S. (2016), "Experimental and numerical analyses on determination of indirect (splitting) tensile strength of cemented paste backfill materials under different loading apparatus", Geomech. Eng., 10(6), 775-791. https://doi.org/10.12989/gae.2016.10.6.775.
  34. Kranz, R. L. (1979), "Crack-crack and crack-hole interactions in stressed granite", Int. J. Rock Mech. Min. Sci., 16, 37-47. https://doi.org/10.1016/0148-9062(79)90773-3.
  35. Lajtai, E.Z. (1974), "Brittle fracture in compression", Int. J. Fract., 10(4), 525-536. https://doi.org/10.1007/BF00155255.
  36. Liu, H.D., Li, L.D., Zhao, S.L. and Hu, S.H. (2019a), "Complete stress-strain constitutive model considering crack model of brittle rock", Environ. Earth Sci., 78, 629. https://doi.org/10.1007/s12665-019-8643-z.
  37. Liu, W.R., Yuan, W., Yan, Y.T. and Wang, X. (2019b), "Analysis of acoustic emission characteristics and damage constitutive model of coal-rock combined body based on particle flow code", Symmetry, 11(8), 1040. https://doi.org/10.3390/sym11081040.
  38. Liu, X.S., Tan, Y.L., Ning, J.G., Lu, Y.W. and Gu, Q.H. (2018), "Mechanical properties and damage constitutive model of coal in coal-rock combined body", Int. J. Rock Mech. Min. Sci., 110, 140-150. https://doi.org/10.1016/j.ijrmms.2018.07.020.
  39. Lisjak, A. and Grasselli, G. (2014), "A review of discrete modeling techniques for fracturing processes in discontinuous rock mass", J. Rock Mech. Geotech. Eng., 6(4), 301-314. https://doi.org/10.1016/j.jrmge.2013.12.007.
  40. Lollino, G., Giordan, D., Thuro, K., Carranza-Torres, C., Wu, F., Marinos, P. and Delgado, C. (2015), Engineering Geology for Society and Territory Volume 6: Applied Geology for Major Engineering Projects, Springer International Publishing, Cham, Canton of Zug, Switzerland.
  41. Marinelli, F. and Buscarnera, G. (2019), "Anisotropic breakage mechanics: From stored energy to yielding in transversely isotropic granular rocks", J. Mech. Phys. Solids, 129, 1-18. https://doi.org/10.1016/j.jmps.2019.04.013.
  42. Martin, C.D., Kaiser, P.K. and Christiansson, R. (2003), "Stress, instability and design of underground excavations", Int. J. Rock Mech. Min. Sci., 40, 1027-1047. https://doi.org/10.1016/S1365-1609(03)00110-2.
  43. Mikl-Resch, M. J., Antretter, T., Gimpel, M., Kargl, H., Pittino, G., Tichy, R., Ecker, W. and Galler,R. (2015), "Numerical calibration of a yield limit function for rock materials by means of the Brazilian test and the uniaxial compression test", Int. J. Rock Mech. Min., 74, 24-29. http://dx.doi.org/10.1016/j.ijrmms.2014.12.001.
  44. Molladavoodi, H. and Mortazavi, A. (2011), "A damage-based numerical analysis of brittle rocks failure mechanism", Finite Elem. Anal. Des., 47, 991-1003. https://doi.org/10.1016/j.finel.2011.03.015.
  45. Mondal, S., Olsen-Kettle, L.and Gross, L. (2019), "Simulating damage evolution and fracture propagation in sandstone containing a preexisting 3-D surface flaw under uniaxial compression", Int. J. Numer Anal. Met., 43(7), 1448-1466. https://doi.org/10.1002/nag.2908.
  46. Moradi, P., Asadi, M.J., Ebrahimzadeh, N. and Yarahmadi, B. (2021), "Ilam tunnels inspection, maintenance, and rehabilitation: A case study", Tunn. Under. Sp. Tech., 110, 103814. https://doi.org/10.1016/j.tust.2021.103814.
  47. Nick, H.M., Paluszny, A., Blunt, M.J. and Matthai, S.K. (2011), "Role of geomechanically grown fractures on dispersive transport in heterogeneous geological formations", Phys. Rev. E, 84(5), 056301. https://doi.org/10.1103/PhysRevE.84.056301.
  48. Park, C.H. and Bobet, A. (2009), "Crack coalescence in specimens with open and closed flaws: a comparison", Int. J. Rock Mech. Min. Sci., 46(5), 819-829. https://doi.org/10.1016/j.ijrmms.2009.02.006.
  49. Pelli, F., Kaiser, P.K. and Morgenstern, N.R. (1991), "An interpretation of ground movements recorded during construction of ground movements recorded during construction of the Donkin-Morien tunnel", Can. Geotech. J., 28(28), 239-254. https://doi.org/10.1016/0148-9062(92)91539-h.
  50. Pepe, G., Mineo, S., Pappalardo, G. and Cevasco, A. (2017), "Relation between crack initiation-damage stress thresholds and failure strength of intact rock", Bull. Eng. Geol. Environ., 77(2), 709-724. https://doi.org/10.1007/s10064-017-1172-7.
  51. Potyondy D.O. (2015), "The bonded-particle model as a tool for rock mechanics research and application: current trends and future directions", Geosyst. Eng., 18(1), 1-28. https://doi.org/10.1080/12269328.2014.998346.
  52. Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011.
  53. Sharafisafa, M., Aliabadian, Z., Tahmasebinia, F. and Shen, L.M. (2020), "A comparative study on the crack development in rock-like specimens containing unfilled and filled flaws", Eng. Fract. Mech., 241, 107405. https://doi.org/10.1016/j.engfracmech.2020.107405.
  54. Strmsvik, H. and Gammelster, B. (2020), "Investigation and assessment of pre-grouted rock mass", B. Eng. Geol. Environ., 79, 2543-2560. https://doi.org/10.1007/s10064-019-01722-9.
  55. Tian, W.L. and Yang, S.Q. (2017), "Experimental and numerical study on the fracture coalescence behavior of rock-like materials containing two non-coplanar filled fissures under uniaxial compression", Geomech. Eng., 12(3), 541-560. https://doi.org/10.12989/gae.2017.12.3.541.
  56. Tropeano, M., Sabato, L. and Pieri, P. (2002), "Filling and cannibalization of a foredeep: The Bradanic Trough, Southern Italy", Geol. Soc. of London, Spec. Publ., 191(1), 55-79. https://doi.org/10.1144/GSL.SP.2002.191.01.05.
  57. Vasarhelyi, B. and Bobet, A. (2000), "Modeling of crack initiation, propagation and coalescence in uniaxial compression", Rock Mech. Rock Eng., 33(2), 119-139. https://doi.org/10.1007/s006030050038.
  58. Wang, D.B., Bian, X.B., Qin, H., Sun, D.L. and Yu, B. (2021), "Experimental investigation of mechanical properties and failure behavior of fluid-saturated hot dry rocks", Nat. Resour. Res., 30(1), 289-304. https://doi.org/10.1007/s11053-020-09760-x.
  59. Wang, X., Wen, Z.J. and Jiang, Y.J. (2016), "Time-space effect of stress field and damage evolution law of compressed coalrock", Geotech. Geol. Eng., 34(6), 1933-1940. https://doi.org/10.12989/gae.2020.21.3.259.
  60. Wong, R.H.C., Lin, P. and Tang, C.A. (2006), "Experimental and numerical study on splitting failure of brittle solids containing single pore under uniaxial compression", Mech. Mater., 38(1-2), 142-159. https://doi.org/10.1016/j.mechmat.2005.05.017.
  61. Wu, M., Wang, J., Russell, A. and Cheng, Z. (2020), "DEM modelling of mini-triaxial test based on one-to-one mapping of sand particles", Geotechnique, 71(8), 1-14. https://doi.org/10.1680/jgeot.19.P.212.
  62. Wu, M., Huang, R., and Wang, J. (2021), "DEM simulations of cemented sands with a statistical representation of micro-bond parameters", Powder Technol., 379, 96-107. https://doi.org/10.1016/j.powtec.2020.10.047.
  63. Xia, Z.G., Chen, S.J., Liu, X. Z. and Sun, R. (2020), "Strength characteristics and fracture evolution of rock with different shapes inclusions based on particle flow code", Geomech. Eng., 22(5), 461-473. https://doi.org/10.12989/gae.2020.22.5.461.
  64. Yang, B., Jiao, Y. and Lei, S. (2006), "A study on the effects of microparameters on macroproperties for specimens created by bonded particles", Eng. Computation., 23(6), 607-631. https://doi.org/10.1108/02644400610680333.
  65. Yang, S.Q., Huang, Y.H., Tian, W.L. and Zhu, J.B. (2017), "An experimental investigation on strength, deformation and crack evolution behavior of sandstone containing two oval flaws under uniaxial compression", Eng. Geol., 217, 35-48. http://dx.doi.org/10.1016/j.enggeo.2016.12.004.
  66. Yin, D.W., Chen, S.J., Chen, B., Liu, X.Q. and Ma, H.F. (2018), "Strength and failure characteristics of the rock coal combined body with single joint in coal", Geomech. Eng., 15(5), 1113-1124. https://doi.org/10.12989/gae.2018.15.5.1113.
  67. Zhou, Z.L., Tan, L.H., Cao, W.Z., Zhou, Z.Y. and Cai, X. (2017), "Fracture evolution and failure behaviour of marble specimens containing rectangular cavities under uniaxial loading", Eng. Fract. Mech., 184, 183-201. https://doi.org/10.1016/j.engfracmech.2017.08.029.
  68. Zuo, J.P., Xie, H.P., Wu, A.M. and Liu, J.F. (2011), "Investigation on failure mechanisms and mechanical behaviors of deep coal-rock single body and combined body", Chin. J. Rock Mech. Eng., 30(1), 84-92. https://doi.org/10.3724/SP.J.1077.2011.00271.