DOI QR코드

DOI QR Code

DEM modelling of retained backfill: Influence of particle shape for different stress paths and densities

  • 투고 : 2020.07.14
  • 심사 : 2021.10.05
  • 발행 : 2021.11.10

초록

This paper investigates the relative influences of backfill particle properties and imposed stress path on the response of retained granular assemblies. The characteristics considered are particle shape, backfill density, and gradation. For this purpose, Discrete Element Modelling (DEM) is employed to simulate the development of passive and active states in a cohesionless soil. Particle shape is assessed first through restraining the rotational freedoms of spherical particles (i.e. assigning rolling resistance), and the next by joining spherical particles (i.e. multisphere). The obtained results show that it is not possible to capture realistic response using a contact-independent rolling resistance model. Then, using backfill models composed of particles with various angularities, which are prepared at two alternative densities, backfill deformation towards passive and active states are simulated. Results are used to judge the relative weights of the influences of particle angularity, backfill density and gradation on back behaviour, employing both qualitative and quantitative methods. For densely packed clump particles varying particle angularity influences backfill density, shear band characteristics, geometries of the resulting failure wedges, and distribution of lateral backfill pressure. In addition, the effect of shape complexity is evaluated for packings with identical initial density, which are relatively loose. Overall, comparing the results from packings with different densities revealed the idea that particle shape effect is density and stress-path dependent.

키워드

과제정보

The authors would like to thank The Scientific and Research Council of Turkey (TUBITAK) for supporting this study with Project number 114M329.

참고문헌

  1. Ai, J., Chen, J.F., Rotter, J.M. and Ooi, J.Y. (2011), "Assessment of rolling resistance models in discrete element simulations", Powder Technol., 206(3), 269-282. https://doi.org/10.1016/j.powtec.2010.09.030.
  2. Alshibli, K.A. and Cil, M.B. (2018), "Influence of particle morphology on the friction and dilatancy of sand", J. Geotech. Geoenvironmental Eng., 144(3), 4017118. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001841.
  3. Altunbas, A., Soltanbeigi, B. and Cinicioglu, O. (2017), "Determination of active failure surface geometry for cohesionless backfills", Geomech. Eng., 12(6), 983-1001. https://doi.org/10.12989/gae.2017.12.6.983.
  4. Altunbas, A., Soltanbeigi, B. and Cinicioglu, O. (2019), "DEM analysis of passive failure state behind a rigid retaining wall: Effect of boundary conditions", IS-Glasgow 2019-7th International Symposium on Deformation Characteristics of Geomaterials, Glasgow, June. https://doi.org/10.1051/e3sconf/20199214012.
  5. Bardet, J.P. and Huang, Q. (1992), "Numerical modeling of micropolar effects in idealized granular materials", Mech. Granul. Mater. Powder Syst., 37, 85-91.
  6. Bolton, M.D. (1986), "The strength and dilatancy of sands", Geotechnique, 36(1), 65-78. https://doi.org/10.1680/geot.1986.36.1.65.
  7. Bono, J.P. de and McDowell, G.R. (2014), "DEM of triaxial tests on crushable sand", Granul. Matter, 16(4), 551-562. https://doi.org/10.1007/s10035-014-0500-x.
  8. Cho, G.C., Dodds, J. and Santamarina, J.C. (2006), "Particle shape effects on packing density, stiffness and strength: Natural and crushed sands", J. Geotech. Geoenvironmental Eng., 132(5), 591-602. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591).
  9. Cinicioglu, O. and Abadkon, A. (2015), "Dilatancy and friction angles based on in situ soil conditions", J. Geotech. Geoenvironmental Eng., 141(4), 6014019. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001272.
  10. Coulomb, C.A. (1776), "An attempt to apply the rules of maxima and minima to several problems of stability related to architecture", Memoires l'Academie R. Des Sci., 7, 343-382.
  11. Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotechnique, 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47.
  12. Gezgin, A.T. and Cinicioglu, O. (2019), "Consideration of locked-in stresses during backfill preparation", Geomech. Eng., 18(3), 247-258. https://doi.org/10.12989/gae.2019.18.3.247.
  13. Gezgin, A.T., Soltanbeigi, B. and Cinicioglu, O. (2020), "Discrete-element modelling of pile penetration to reveal influence of soil characteristics", Proc. Inst. Civil Engineers-Geotech. Eng., 2020, 1-42. https://doi.org/10.1680/jgeen.20.00134.
  14. Gezgin, A.T., Soltanbeigi, B., Altunbas, A. and Cinicioglu, O. (2021), "Multi-scale investigation of active failure for various modes of wall movement", Front. Struct. Civ. Eng. 15, 961-979. https://doi.org/10.1007/s11709-021-0738-4.
  15. Hanna, A. and Al Khoury, I. (2005), "Passive earth pressure of overconsolidated cohesionless backfill", J. Geotech. Geoenviron. Eng., 131(8), 978-986. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:8(978).
  16. Holtz, R.D., Kovacs, W.D. and Sheahan, T.C. (1981), An Introduction to Geotechnical Engineering, Vol. 733, PrenticeHall, NJ, USA.
  17. Holubec, I. and D'appolonia, E. (1973), "Effect of particle shape on the engineering properties of granular soils", Evaluation of Relative Density and Its Role in Geotechnical Projects Involving Cohesionless Soils, 304-318, ASTM International, PA, USA.
  18. Iwashita, K. and Oda, M. (1998), "Rolling resistance at contacts in simulation of shear band development by DEM", J. Eng. Mech., 124(3), 285-292. https://doi.org/10.1061/(ASCE)0733-9399(1998)124:3(285).
  19. Jiang, M., He, J., Wang, J., Liu, F. and Zhang, W. (2014), "Distinct simulation of earth pressure against a rigid retaining wall considering inter-particle rolling resistance in sandy backfill", Granul. Matter, 16(5), 797-814. https://doi.org/10.1007/s10035-014-0515-3.
  20. Jiang, M.J., Yu, H.S. and Harris, D. (2005), "A novel discrete model for granular material incorporating rolling resistance", Comput. Geotech., 32(5), 340-357. https://doi.org/10.1016/j.compgeo.2005.05.001
  21. Kamiloglu, H.A. and Sadoglu, E. (2019), "Experimental and theoretical investigation of short-and long-heel cases of cantilever retaining walls in active state", Int. J. Geomech., 19(5), 4019023. https://doi.org/10.12989/gae.2013.5.6.499
  22. Keshavarz, A. and Pooresmaeil, Z. (2016), "Static and seismic active lateral earth pressure coefficients for c-ϕ soils", Geomech. Eng., 10(5), 657-676. https://doi.org/10.12989/gae.2016.10.5.657.
  23. Khosravi, M.H., Hamedi Azad, F., Bahaaddini, M. and Pipatpongsa, T. (2017), "DEM Analysis of Backfilled Walls Subjected to Active Translation Mode", Int. J. Min. Geo-Engineering, 51(2), 191-197. https://dx.doi.org/10.22059/ijmge.2017.233613.594675.
  24. Lee, S.W. (2019), "Experimental study on effect of underground excavation distance on the behavior of retaining wall", Geomech. Eng., 17(5), 413-420. https://doi.org/10.12989/gae.2019.17.5.413.
  25. Lesniewska, D. and Muir Wood, D. (2011), "Photoelastic and photographic study of a granular material", Geotechnique, 61(7), 605-611. https://doi.org/10.1680/geot.8.T.017.
  26. Lesniewska, D., Niedostatkiewicz, M. and Tejchman, J. (2012), "Experimental study on shear localisation in granular materials within combined strain and stress field", Strain, 48(5), 430-444. https://doi.org/10.1111/j.1475-1305.2012.00838.x.
  27. Lim, M.S., Wijeyesekera, D.C., Zainorabidin, A. and Bakar, I. (2012), "The effects of particle morphology (shape and sizes) characteristics on its engineering behaviour and sustainable engineering performance of sand", Int. J. Integr. Eng., 4(3), 27-37.
  28. Nadukuru, S.S. and Michalowski, R.L. (2012), "Arching in distribution of active load on retaining walls", J. Geotech. Geoenvironmental Eng., 138(5), 575-584. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000617.
  29. Niedostatkiewicz, M., Lesniewska, D. and Tejchman, J. (2011), "Experimental analysis of shear zone patterns in cohesionless for earth pressure problems using particle image velocimetry", Strain, 47(SUPPL. 2), 218-231. https://doi.org/10.1111/j.1475-1305.2010.00761.x.
  30. Nitka, M., Tejchman, J., Kozicki, J. and Lesniewska, D. (2015), "DEM analysis of micro-structural events within granular shear zones under passive earth pressure conditions", Granul. Matter, 17(3), 325-343. https://doi.org/10.1007/s10035-015-0558-0.
  31. Nubel, K. (2002), Experimental and Numerical Investigation of Shear Localization in Granular Material, TIB Hannover, Germany.
  32. O'Sullivan, C. (2011), Particulate Discrete Element Modelling: A Geomechanics Perspective, CRC Press, Florida, USA.
  33. Oda, M. and Kazama, H. (1998), "Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils", Geotechnique, 48(4), 465-481. https://doi.org/10.1680/geot.1998.48.4.465
  34. Rankine, W.J.M. (1857), "II. On the stability of loose earth", Philosopical Transactions, 9-27, The Royal Society, London, United Kingdom.
  35. Rechenmacher, A.L., Abedi, S., Chupin, O. and Orlando, A.D. (2011), "Characterization of mesoscale instabilities in localized granular shear using digital image correlation", Acta Geotech., 6(4), 205-217. https://doi.org/10.1007/s11440-011-0147-2.
  36. Rodriguez, J. M., Edeskar, T. and Knutsson, S. (2013), "Particle shape quantities and measurement techniques-A review", Electron. J. Geotech. Eng., 18, 169-198.
  37. Sakaguchi, H., Ozaki, E. and Igarashi, T. (1993), "Plugging of the flow of granular materials during the discharge from a silo", Int. J. Mod. Phys. B, 7(09n10), 1949-1963. https://doi.org/10.1142/S0217979293002705.
  38. Sancak, E. and Cinicioglu, O. (2020), "Selection of design friction angle : A strain based empirical method for coarse grained soils", Geomech. Eng., 20(2), 121-129. https://doi.org/10.12989/gae.2020.20.2.121.
  39. Shin, H. and Santamarina, J.C. (2013), "Role of particle angularity on the mechanical behavior of granular mixtures", J. Geotech. Geoenvironmental Eng., 139(2), 353-355. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000768.
  40. Soltanbeigi, B. (2019), "Multi-scale analysis of the influence of particle shape on the mechanical response of granular materials", Ph.D. Dissertation, The University of Edinburgh, Edinburgh. https://era.ed.ac.uk/handle/1842/35752.
  41. Soltanbeigi, B., Altunbas, A. and Cinicioglu, O. (2019), "Influence of dilatancy on shear band characteristics of granular backfills", Eur. J. Environ. Civ. Eng., 1-18. https://doi.org/10.1080/19648189.2019.1572542
  42. Soltanbeigi, B., Altunbas, A., Gezgin, A.T. and Cinicioglu, O. (2020), "Determination of passive failure surface geometry for cohesionless backfills", Periodica Polytech. Civil Eng., 64(4), 1100-1110. https://doi.org/10.3311/PPci.14241.
  43. Soltanbeigi, B., Papanicolopulos, S. and Ooi, J.Y. (2016), "Particle shape effect on deformation localization during quasi-static flow at active state", 5th International Conference on Geotechnical Engineering and Soil Mechanics, Tehran, November.
  44. Soltanbeigi, B., Podlozhnyuk, A., Papanicolopulos, S. A., Kloss, C., Pirker, S. and Ooi, J. Y. (2018), "DEM study of mechanical characteristics of multi-spherical and superquadric particles at micro and macro scales", Powder Technol., 329, 288-303. https://doi.org/10.1016/j.powtec.2018.01.082.
  45. Sukumaran, B. and Ashmawy, A.K. (2001), "Quantitative characterisation of the geometry of discrete particles", Geotechnique, 51(7), 619-627. https://doi.org/10.1680/geot.2001.51.7.619.
  46. Tang, H., Dong, Y., Chu, X. and Zhang, X. (2016), "The influence of particle rolling and imperfections on the formation of shear bands in granular material", Granul. Matter, 18(1), 12. https://doi.org/10.1007/s10035-016-0607-3.
  47. Tehrani, F.S., Arshad, M.I., Prezzi, M. and Salgado, R. (2014), "Visualization of active mode of failure behind flexible walls under pure rotation using digital image correlation", Geo-Congress 2014 Geo-Characterization Modeling Sustainability, 3393-3402, Atlanta, February.
  48. Tejchman, J., Bauer, E. and Tantono, S.F. (2007), "Influence of initial density of cohesionless soil on evolution of passive earth pressure", Acta Geotech., 2(1), 53-63. https://doi.org/10.1007/s11440-007-0022-3.
  49. Terzaghi, K. (1943), Theoretical Soil Mechanics, John Wiley and Sons, NJ, USA.
  50. Tian, J., Liu, E. and He, C. (2020), "Shear band analysis of granular materials considering effects of particle shape", Acta Mech., 231(11), 4445-4461. https://doi.org/https://doi.org/10.1007/s00707-020-02771-y.
  51. Toyosawa, Y., Itoh, K., Tamrakar, S.B. and Suemasa, N. (2006), "Redistribution of active earth pressures using movable earth support apparatus in centrifuge", Proceedings of 6th International Conference on Physical Modelling in Geotechnics, 2(4), 1113-1118. https://doi.org/10.1201/noe0415415866.ch163.
  52. Vangla, P. and Latha, G.M. (2015), "Influence of particle size on the friction and interfacial shear strength of sands of similar morphology", Int. J. Geosynth. Gr. Eng., 1(1), 6. https://doi.org/10.1007/s40891-014-0008-9.
  53. Wiacek, J. and Molenda, M. (2014), "Effect of particle size distribution on micro-and macromechanical response of granular packings under compression", Int. J. Solids Struct., 51(25-26), 4189-4195. https://doi.org/10.1016/j.ijsolstr.2014.06.029.
  54. Widulinski, L., Tejchman, J., Kozicki, J. and Lesniewska, D. (2011), "Discrete simulations of shear zone patterning in sand in earth pressure problems of a retaining wall", J. Solids Struct., 48(7), 1191-1209. https://doi.org/https://doi.org/10.1016/j.ijsolstr.2011.01.005.
  55. Wood, D.M. (1990), Soil Behaviour and Critical State Soil Mechanics, Cambridge University Press, Cambridge, United Kingdom.
  56. Zhao, S., Evans, T. M. and Zhou, X. (2017), "Random packing of tetrahedral particles using the polyhedral and multi-sphere discrete element method", Springer Proc. Phys., 188, 91-99. https://doi.org/10.1007/978-981-10-1926-5_11.
  57. Zheng, D.F., Nian, T.K., Liu, B., Yin, P. and Song, L. (2015), "Coefficient charts for active earth pressures under combined loadings", Geomech. Eng., 8(3), 461-476. https://doi.org/10.12989/gae.2015.8.3.461.
  58. Zhou, Y.C., Wright, B.D., Yang, R. Y., Xu, B. H. and Yu, A.B. (1999), "Rolling friction in the dynamic simulation of sandpile formation", Phys. A Stat. Mech. Its Appl., 269(2-4), 536-553. https://doi.org/10.1016/S0378-4371(99)00183-1.
  59. Zhuang, L., Nakata, Y. and Lee, I.M. (2013), "Localized deformation in sands and glass beads subjected to plane strain compressions", Geomech. Eng., 5(6), 499-517. https://doi.org/10.12989/gae.2013.5.6.499.
  60. Zhuang, L., Nakata, Y., Kim, U.G. and Kim, D. (2014), "Influence of relative density, particle shape and stress path on the plane strain compression behavior of granular materials", Acta Geotech., 9(2), 241-255. https://doi.org/10.1007/s11440-013-0253-4.