DOI QR코드

DOI QR Code

Numerical and experimental research on actuator forces in toggled active vibration control system (Part II: Experimental)

  • Mirfakhraei, Sayyed Farhad (Department of Civil Engineering, Seraj University) ;
  • Ahmadi, Hamid Reza (Department of Civil Engineering, Faculty of Engineering, University of Maragheh) ;
  • Chan, Ricky (Department of Civil and Infrastructural Engineering, Faculty of Civil Engineering, RMIT University)
  • Received : 2020.02.22
  • Accepted : 2021.08.27
  • Published : 2021.11.25

Abstract

In this research, new toggled actuator forces were proposed. For this purpose, numerical and experimental investigation of the installation of the actuator in a toggle configuration for the decreasing of active control forces in engineering structures has been carried out. In the first part, numerical studies were investigated. In addition to numerical research on the effects of the toggle configuration on actuator forces, an experimental investigation has been carried out by building a table model of the mentioned system. The algorithm of the system is LQR, and ATmega328 has been used as a control platform. Comparing results through the experimental and numerical processes express high matching that relies on mitigating control forces in the toggled active model. Based on the results, a significant reduction in actuator forces through using the proposed toggle configuration.

Keywords

References

  1. Abe, M. and Fujino, Y. (1994), "Dynamic characterization of multiple tuned mass dampers and some design formulas", Earthq. Eng. Struct. Dyn., 23(8), 813-835. https://doi.org/10.1002/eqe.4290230802
  2. Ahmadi, H.R. and Anvari, D. (2018a), "Health monitoring of pedestrian truss bridges using cone-shaped kernel distribution", Smart Struct. Syst., Int. J., 22(6), 699-709. https://doi.org/10.12989/sss.2018.22.6.699
  3. Ahmadi, H.R. and Anvari, D. (2018b), "New damage index based on least squares distance for damage diagnosis in steel girder of bridge's deck", Struct. Control Health Monitor., 25(10), e2232. https://doi.org/10.1002/stc.2232
  4. Ahmadi, H.R., Daneshjoo, F. and Khaji, N. (2015), "New damage indices and algorithm based on square time-frequency distribution for damage detection in concrete piers of railroad bridges", Struct. Control Health Monitor., 22(1), 91-106. https://doi.org/10.1002/stc.1662
  5. Ahmadi, H.R., Namdari, N., Cao, M. and Bayat, M. (2019), "Seismic investigation of pushover methods for concrete piers of curved bridges in plan", Comput. Concrete, Int. J., 23(1), 1-10. https://doi.org/10.12989/cac.2019.23.1.001
  6. Alavi, A.H., Jiao, P., Buttlar, W.G. and Lajnef, N. (2018), "Internet of Things-enabled smart cities: State-of-the-art and future trends", Measurement, 129, 589-606. https://doi.org/10.1016/j.measurement.2018.07.067
  7. Alkayem, N.F., Cao, M. and Ragulskis, M. (2019), "Damage localization in irregular shape structures using intelligent FE model updating approach with a new hybrid objective function and social swarm algorithm", Appl. Soft Comput., 83, 105604. https://doi.org/10.1016/j.asoc.2019.105604
  8. Amini, F. and Tavassoli, M.R. (2005), "Optimal structural active control force, number and placement of controllers", Eng. Struct., 27(9), 1306-1316. https://doi.org/10.1016/j.engstruct.2005.01.006
  9. Bagha, A.K. and Modak, S.V. (2017), "Feedback control strategies for active control of noise inside a 3-D vibro-acoustic cavity", Smart Struct. Syst., Int. J., 20(3), 273-283. https://doi.org/10.12989/sss.2017.20.3.273
  10. Bayat, M., Bayat, M., Kia, M., Ahmadi, H.R. and Pakar, I. (2018), "Nonlinear frequency analysis of beams resting on elastic foundation using max-min approach", Geomech. Eng., Int. J., 16(4), 355-361. https://doi.org/10.12989/gae.2018.16.4.355
  11. Bayat, M., Ahmadi, H.R. and Mahdavi, N. (2019), "Application of power spectral density function for damage diagnosis of bridge piers", Struct. Eng. Mech., Int. J., 71(1), 57-63. https://doi.org/10.12989/sem.2019.71.1.057
  12. Bayat, M., Pakar, I., Ahmadi, H.R., Cao, M. and Alavi, A.H. (2020a), "Structural health monitoring through nonlinear frequency-based approaches for conservative vibratory systems", Struct. Eng. Mech., Int. J., 73(3), 331-337. https://doi.org/10.12989/sem.2020.73.3.331
  13. Bayat, M., Kia, M., Soltangharaei, V., Ahmadi, H.R. and Ziehl, P. (2020b), "Bayesian demand model based seismic vulnerability assessment of a concrete girder bridge", Adv. Concrete Constr., Int. J., 9(4), 337-343. https://doi.org/10.12989/acc.2020.9.4.337
  14. Bayramoglu, G., Ozgen, A. and Altinok, E. (2014), "Seismic performance evaluation and retrofitting with viscous fluid dampers of an existing bridge in Istanbul", Struct. Eng. Mech., Int. J., 49(4), 463-477. https://doi.org/10.12989/sem.2014.49.4.463
  15. Bisheh, H., Wu, N. and Rabczuk, T. (2019), "Free vibration analysis of smart laminated carbon nanotube-reinforced composite cylindrical shells with various boundary conditions in hygrothermal environments", Thin-Wall. Struct., 149, 106500. https://doi.org/10.1016/j.tws.2019.106500
  16. Braz-Cesar, M.T. and Barros, R. (2018), "Semi-active fuzzy based control system for vibration reduction of a sdof structure under seismic excitation", Smart Struct. Syst., Int. J., 21(4), 389-395. https://doi.org/10.12989/sss.2018.21.4.389
  17. Cao, M. and Qiao, P. (2009), "Novel Laplacian scheme and multiresolution modal curvatures for structural damage identification", Mech. Syst. Signal Process., 23(4), 1223-1242. https://doi.org/10.1016/j.ymssp.2008.10.001
  18. Cao, H., Reinhorn, A.M. and Soong, T.T. (1998), "Design of an active mass damper for a tall TV tower in Nanjing, China", Eng. Struct., 20(3), 134-143. https://doi.org/10.1016/S0141-0296(97)00072-2
  19. Cao, M., Radzienski, M., Xu, W. and Ostachowicz, W. (2014), "Identification of multiple damage in beams based on robust curvature mode shapes", Mech. Syst. Signal Process., 46(2), 468-480. https://doi.org/10.1016/j.ymssp.2014.01.004
  20. Cheng, F.Y. (1988), "Response control based on structural optimization and its combination with active protection", Proceedings of the World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan.
  21. Cheng, F.Y., Jiang, H. and Lou, K. (2008), Smart structures: innovative systems for seismic response control, CRC Press, Boca Raton, Florida, USA.
  22. Chopra, A.K. (2017), Dynamics of Structures. Theory and Applications to Earthquake Engineering, Prentice-hall International Series, NY, USA.
  23. Constantinou, M.C., Tsopelas, P., Hammel, W. and Sigaher, A.N. (2001), "Toggle-brace-damper seismic energy dissipation systems", J. Struct. Eng., 127(2), 105-112. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:2(105)
  24. Council, B.S.S. (2000), Prestandard and commentary for the seismic rehabilitation of buildings, Report FEMA-356, Washington, DC, USA.
  25. De Domenico, D. and Ricciardi, G. (2018), "Earthquake protection of existing structures with limited seismic joint: base isolation with supplemental damping versus rotational inertia", Adv. Civil Eng., 2018, 6019495. https://doi.org/10.1155/2018/6019495
  26. Dinh, V.N., Basu, B. and Nagarajaiah, S. (2016), "Semi-active control of vibrations of spar type floating offshore wind turbines", Smart Struct. Syst., Int. J., 18(4), 683-705. https://doi.org/10.12989/sss.2016.18.4.683
  27. Fisco, N.R. and Adeli, H. (2011), "Smart structures: part I-active and semi-active control", Scientia Iranica, 18(3), 275-284. https://doi.org/10.1016/j.scient.2011.05.034
  28. Fu, F. (2018), Design and Analysis of Tall and Complex Structures, Butterworth-Heinemann, Oxford, UK.
  29. Gandomi, A.H., Alavi, A.H. and Yun, G.J. (2011), "Nonlinear modeling of shear strength of SFRC beams using linear genetic programming", Struct. Eng. Mech., Int. J., 38(1), 1-25. https://doi.org/10.12989/sem.2011.38.1.001
  30. Gharebaghi, S.A. and Zangooei, E. (2017), "Chaotic particle swarm optimization in optimal active control of shear buildings", Struct. Eng. Mech., Int. J., 61(3), 347-357. https://doi.org/10.12989/sem.2017.61.3.347
  31. Hasni, H., Alavi, A.H., Jiao, P. and Lajnef, N. (2017), "Detection of fatigue cracking in steel bridge girders: a support vector machine approach", Arch. Civil Mech. Eng., 17(3), 609-622. https://doi.org/10.1016/j.acme.2016.11.005
  32. He, J., Xu, Y.L., Zhang, C.D. and Zhang, X.H. (2015), "Optimum control system for earthquake-excited building structures with minimal number of actuators and sensors", Smart Struct. Syst., Int. J.,16(6), 981-1002. https://doi.org/10.12989/sss.2015.16.6.981
  33. Hejazi, F., Shoaei, M.D., Tousi, A. and Jaafar, M.S. (2016), "Analytical model for viscous wall dampers", Comput.-Aided Civil Infrastruct. Eng., 31(5), 381-399. https://doi.org/10.1111/mice.12161
  34. Housner, G., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F., Skelton, R.E., Soong, T.T., Spencer, B.F. and Yao, J.T. (1997), "Structural control: past, present, and future", J. Eng. Mech., 123(9), 897-971. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897)
  35. Hwang, J.S., Huang, Y.N., Hung, Y.H. and Huang, J.C. (2004), "Applicability of seismic protective systems to structures with vibration-sensitive equipment", J. Struct. Eng., 130(11), 1676-1684. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:11(1676)
  36. Hwang, J.S., Huang, Y.N. and Hung, Y.H. (2005), "Analytical and experimental study of toggle-brace-damper systems", J. Struct. Eng., 131(7), 1035-1043. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:7(1035)
  37. Ikeda, Y., Sasaki, K., Sakamoto, M. and Kobori, T. (2001), "Active mass driver system as the first application of active structural control", Earthq. Eng. Struct. Dyn., 30(11), 1575-1595. https://doi.org/10.1002/eqe.82
  38. Kareem, A., Kijewski, T. and Tamura, Y. (1999), "Mitigation of motions of tall buildings with specific examples of recent applications", Wind Struct., Int. J., 2(3), 201-251. https://doi.org/10.12989/was.1999.2.3.201
  39. Liu, D.K., Yang, Y.L. and Li, Q.S. (2003), "Optimum positioning of actuators in tall buildings using genetic algorithm", Comput. Struct., 81(32), 2823-2827. https://doi.org/10.1016/j.compstruc.2003.07.002
  40. Lu, Z., Li, J. and Jia, C. (2018), "Studies on energy dissipation mechanism of an innovative viscous damper filled with oil and silt", Sustainability, 10(6), 1-13. https://doi.org/10.3390/su10061777
  41. Mahdavi, N., Ahmadi, H.R. and Mahdavi, H. (2012), "A comparative study on conventional push-over analysis method and incremental dynamic analysis (IDA) approach", Scientific Res. Essays, 7(7), 751-773. https://doi.org/10.5897/SRE10.042
  42. Majeed, A.P.A. Taha, Z. Abdullah, M.A. Azmi, K.Z.M. and Zakaria, M.A. (2018), "The control of an upper extremity exoskeleton for stroke rehabilitation: An active force control scheme approach", Adv. Robot. Res., Int. J., 2(3), 237-245. https://doi.org/10.12989/arr.2018.2.3.237
  43. Miah, M.S., Chatzi, E.N. and Weber, F. (2015), "Semi-active control for vibration mitigation of structural systems incorporating uncertainties", Smart Mater. Struct., 24(5), 055016. https://doi.org/10.1088/0964-1726/24/5/055016
  44. Mirfakhraei, S.F., Ahmadi, H.R. and Chan, R. (2020), "Numerical and experimental research on actuator forces in toggled active vibration control system (Part I: Numerical)", Smart Struct. Syst., Int. J., 25(2), 229-240. https://doi.org/10.12989/sss.2020.25.2.229
  45. Muthalif, A.G., Kasemi, H.B., Nordin, N.H., Rashid, M.M. and Razali, M.K.M. (2017), "Semi-active vibration control using experimental model of magnetorheological damper with adaptive F-PID controller", Smart Struct. Syst., Int. J., 20(1), 85-97. https://doi.org/10.12989/sss.2017.20.1.085
  46. Najafabadi, A.A., Daneshjoo, F. and Ahmadi, H.R. (2020), "Multiple damage detection in complex bridges based on strain energy extracted from single point measurement", Frontiers Struct. Civil Eng., 14, 722-730. https://doi.org/10.1007/s11709-020-0624-5
  47. Pantelides, C.P. and Cheng, F.Y. (1990), "Optimal placement of controllers for seismic structures", Eng. Struct., 12(4), 254-262. https://doi.org/10.1016/0141-0296(90)90024-M
  48. Park, W., Park, K.S., Koh, H.M. and Ha, D.H. (2006), "Wind-induced response control and serviceability improvement of an air traffic control tower", Eng. Struct., 28(7), 1060-1070. https://doi.org/10.1016/j.engstruct.2005.11.013
  49. Park, W., Park, K.S. and Koh, H.M. (2008), "Active control of large structures using a bilinear pole-shifting transform with H control method", Eng. Struct., 30(11), 3336-3344. https://doi.org/10.1016/j.engstruct.2008.05.009
  50. Rabczuk, T., Samaniego, E. and Belytschko, T. (2007), "Simplified model for predicting impulsive loads on submerged structures to account for fluid-structure interaction", Int. J. Impact Eng., 34(2), 163-177. https://doi.org/10.1016/j.ijimpeng.2005.08.012
  51. Rao, A.R.M. and Sivasubramanian, K. (2008), "Optimal placement of actuators for active vibration control of seismic excited tall buildings using a multiple start guided neighbourhood search (MSGNS) algorithm", J. Sound Vib., 311(1-2), 133-159. https://doi.org/10.1016/j.jsv.2007.08.031
  52. Ras, A. and Boumechra, N. (2016), "Seismic energy dissipation study of linear fluid viscous dampers in steel structure design", Alexandria Eng. J., 55(3), 2821-2832. https://doi.org/10.1016/j.aej.2016.07.012
  53. Reinhorn, A.M., Viti, S. and Cimellaro, G. (2005), "Retrofit of structures: Strength reduction with damping enhancement", Proceedings of the 37th UJNR Panel Meeting on Wind and Seismic Effects.
  54. Ricciardelli, F., Pizzimenti, A.D. and Mattei, M. (2003), "Passive and active mass damper control of the response of tall buildings to wind gustiness", Eng. Struct., 25(9), 1199-1209. https://doi.org/10.1016/S0141-0296(03)00068-3
  55. Shokouhian, M., Shi, Y. and Head, M. (2016), "Interactive buckling failure modes of hybrid steel flexural members", Eng. Struct., 125, 153-166. https://doi.org/10.1016/j.engstruct.2016.07.001
  56. Sigaher, A.N. and Constantinou, M.C. (2003), "Scissor-jack-damper energy dissipation system", Earthq. Spectra, 19(1), 133-158. https://doi.org/10.1193/1.1540999
  57. Soong, T.T. and Dargush, G.F. (1997), Passive Energy Dissipation Systems in Structural Engineering, John Wiley & Sons.
  58. Soong, T.T. and Spencer Jr, B.F. (2002), "Supplemental energy dissipation: state-of-the-art and state-of-the-practice", Eng. Struct., 24(3), 243-259. https://doi.org/10.1016/S0141-0296(01)00092-X
  59. Spencer Jr, B.F. and Nagarajaiah, S. (2003), "State of the art of structural control", J. Struct. Eng., 129(7), 845-856. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(845)
  60. Spencer, B.F. and Sain, M.K. (1997), "Controlling buildings: a new frontier in feedback", IEEE Control Systems, 17(6), 19-35. https://doi.org/10.1109/37.642972
  61. Taylor, D.P. (1999a), U.S. Patent No. 5,870,863. Washington, DC: U.S. Patent and Trademark Office.
  62. Taylor, D.P. (1999b), U.S. Patent No. 5,934,028. Washington, DC: U.S. Patent and Trademark Office.
  63. Tian, Z., Mokrani, B., Alaluf, D., Jiang, J. and Preumont, A. (2017), "Active tendon control of suspension bridges: Study on the active cables configuration", Smart Struct. Syst., Int. J., 19(5), 463-472. https://doi.org/10.12989/sss.2017.19.5.463
  64. Vu-Bac, N., Lahmer, T., Zhuang, X., Nguyen-Thoi, T. and Rabczuk, T. (2016), "A software framework for probabilistic sensitivity analysis for computationally expensive models", Adv. Eng. Software, 100, 19-31. https://doi.org/10.1016/j.advengsoft.2016.06.005
  65. Xu, Y.L. and Teng, J. (2002), "Optimum design of active/passive control devices for tall buildings under earthquake excitation", Struct. Des. Tall Build., 11(2), 109-127. https://doi.org/10.1002/tal.193
  66. Xu, H.B., Zhang, C.W., Li, H., Tan, P., Ou, J.P. and Zhou, F.L. (2014), "Active mass driver control system for suppressing wind-induced vibration of the Canton Tower", Smart Struct. Syst., Int. J., 13(2), 281-303. https://doi.org/10.12989/sss.2014.13.2.281
  67. Yamamoto, M., Aizawa, S., Higashino, M. and Toyama, K. (2001), "Practical applications of active mass dampers with hydraulic actuator", Earthq. Eng. Struct. Dyn., 30(11), 1697-1717. https://doi.org/10.1002/eqe.88
  68. Yamazaki, S., Nagata, N. and Abiru, H. (1992), "Tuned active dampers installed in the Minato Mirai (MM) 21 Landmark Tower in Yokohama", J. Wind Eng. Indust. Aerodyn., 43(1-3), 1937-1948. https://doi.org/10.1016/0167-6105(92)90618-K
  69. Yang, J.N. and Soong, T.T. (1988), "Recent advances in active control of civil engineering structures", Probabilistic Eng. Mech., 3(4), 179-188. https://doi.org/10.1016/0266-8920(88)90010-0
  70. Yanik, A. (2019), "Absolute instantaneous optimal control performance index for active vibration control of structures under seismic excitation", Shock Vib., 2019, 4207427. https://doi.org/10.1155/2019/4207427
  71. Zhan, M., Wang, S., Yang, T., Liu, Y. and Yu, B. (2017), "Optimum design and vibration control of a space structure with the hybrid semi-active control devices", Smart Struct. Syst., Int. J., 19(4), 341-350. https://doi.org/10.12989/sss.2017.19.4.341