References
- Abe, M. and Fujino, Y. (1994), "Dynamic characterization of multiple tuned mass dampers and some design formulas", Earthq. Eng. Struct. Dyn., 23(8), 813-835. https://doi.org/10.1002/eqe.4290230802
- Ahmadi, H.R. and Anvari, D. (2018a), "Health monitoring of pedestrian truss bridges using cone-shaped kernel distribution", Smart Struct. Syst., Int. J., 22(6), 699-709. https://doi.org/10.12989/sss.2018.22.6.699
- Ahmadi, H.R. and Anvari, D. (2018b), "New damage index based on least squares distance for damage diagnosis in steel girder of bridge's deck", Struct. Control Health Monitor., 25(10), e2232. https://doi.org/10.1002/stc.2232
- Ahmadi, H.R., Daneshjoo, F. and Khaji, N. (2015), "New damage indices and algorithm based on square time-frequency distribution for damage detection in concrete piers of railroad bridges", Struct. Control Health Monitor., 22(1), 91-106. https://doi.org/10.1002/stc.1662
- Ahmadi, H.R., Namdari, N., Cao, M. and Bayat, M. (2019), "Seismic investigation of pushover methods for concrete piers of curved bridges in plan", Comput. Concrete, Int. J., 23(1), 1-10. https://doi.org/10.12989/cac.2019.23.1.001
- Alavi, A.H., Jiao, P., Buttlar, W.G. and Lajnef, N. (2018), "Internet of Things-enabled smart cities: State-of-the-art and future trends", Measurement, 129, 589-606. https://doi.org/10.1016/j.measurement.2018.07.067
- Alkayem, N.F., Cao, M. and Ragulskis, M. (2019), "Damage localization in irregular shape structures using intelligent FE model updating approach with a new hybrid objective function and social swarm algorithm", Appl. Soft Comput., 83, 105604. https://doi.org/10.1016/j.asoc.2019.105604
- Amini, F. and Tavassoli, M.R. (2005), "Optimal structural active control force, number and placement of controllers", Eng. Struct., 27(9), 1306-1316. https://doi.org/10.1016/j.engstruct.2005.01.006
- Bagha, A.K. and Modak, S.V. (2017), "Feedback control strategies for active control of noise inside a 3-D vibro-acoustic cavity", Smart Struct. Syst., Int. J., 20(3), 273-283. https://doi.org/10.12989/sss.2017.20.3.273
- Bayat, M., Bayat, M., Kia, M., Ahmadi, H.R. and Pakar, I. (2018), "Nonlinear frequency analysis of beams resting on elastic foundation using max-min approach", Geomech. Eng., Int. J., 16(4), 355-361. https://doi.org/10.12989/gae.2018.16.4.355
- Bayat, M., Ahmadi, H.R. and Mahdavi, N. (2019), "Application of power spectral density function for damage diagnosis of bridge piers", Struct. Eng. Mech., Int. J., 71(1), 57-63. https://doi.org/10.12989/sem.2019.71.1.057
- Bayat, M., Pakar, I., Ahmadi, H.R., Cao, M. and Alavi, A.H. (2020a), "Structural health monitoring through nonlinear frequency-based approaches for conservative vibratory systems", Struct. Eng. Mech., Int. J., 73(3), 331-337. https://doi.org/10.12989/sem.2020.73.3.331
- Bayat, M., Kia, M., Soltangharaei, V., Ahmadi, H.R. and Ziehl, P. (2020b), "Bayesian demand model based seismic vulnerability assessment of a concrete girder bridge", Adv. Concrete Constr., Int. J., 9(4), 337-343. https://doi.org/10.12989/acc.2020.9.4.337
- Bayramoglu, G., Ozgen, A. and Altinok, E. (2014), "Seismic performance evaluation and retrofitting with viscous fluid dampers of an existing bridge in Istanbul", Struct. Eng. Mech., Int. J., 49(4), 463-477. https://doi.org/10.12989/sem.2014.49.4.463
- Bisheh, H., Wu, N. and Rabczuk, T. (2019), "Free vibration analysis of smart laminated carbon nanotube-reinforced composite cylindrical shells with various boundary conditions in hygrothermal environments", Thin-Wall. Struct., 149, 106500. https://doi.org/10.1016/j.tws.2019.106500
- Braz-Cesar, M.T. and Barros, R. (2018), "Semi-active fuzzy based control system for vibration reduction of a sdof structure under seismic excitation", Smart Struct. Syst., Int. J., 21(4), 389-395. https://doi.org/10.12989/sss.2018.21.4.389
- Cao, M. and Qiao, P. (2009), "Novel Laplacian scheme and multiresolution modal curvatures for structural damage identification", Mech. Syst. Signal Process., 23(4), 1223-1242. https://doi.org/10.1016/j.ymssp.2008.10.001
- Cao, H., Reinhorn, A.M. and Soong, T.T. (1998), "Design of an active mass damper for a tall TV tower in Nanjing, China", Eng. Struct., 20(3), 134-143. https://doi.org/10.1016/S0141-0296(97)00072-2
- Cao, M., Radzienski, M., Xu, W. and Ostachowicz, W. (2014), "Identification of multiple damage in beams based on robust curvature mode shapes", Mech. Syst. Signal Process., 46(2), 468-480. https://doi.org/10.1016/j.ymssp.2014.01.004
- Cheng, F.Y. (1988), "Response control based on structural optimization and its combination with active protection", Proceedings of the World Conference on Earthquake Engineering, Tokyo-Kyoto, Japan.
- Cheng, F.Y., Jiang, H. and Lou, K. (2008), Smart structures: innovative systems for seismic response control, CRC Press, Boca Raton, Florida, USA.
- Chopra, A.K. (2017), Dynamics of Structures. Theory and Applications to Earthquake Engineering, Prentice-hall International Series, NY, USA.
- Constantinou, M.C., Tsopelas, P., Hammel, W. and Sigaher, A.N. (2001), "Toggle-brace-damper seismic energy dissipation systems", J. Struct. Eng., 127(2), 105-112. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:2(105)
- Council, B.S.S. (2000), Prestandard and commentary for the seismic rehabilitation of buildings, Report FEMA-356, Washington, DC, USA.
- De Domenico, D. and Ricciardi, G. (2018), "Earthquake protection of existing structures with limited seismic joint: base isolation with supplemental damping versus rotational inertia", Adv. Civil Eng., 2018, 6019495. https://doi.org/10.1155/2018/6019495
- Dinh, V.N., Basu, B. and Nagarajaiah, S. (2016), "Semi-active control of vibrations of spar type floating offshore wind turbines", Smart Struct. Syst., Int. J., 18(4), 683-705. https://doi.org/10.12989/sss.2016.18.4.683
- Fisco, N.R. and Adeli, H. (2011), "Smart structures: part I-active and semi-active control", Scientia Iranica, 18(3), 275-284. https://doi.org/10.1016/j.scient.2011.05.034
- Fu, F. (2018), Design and Analysis of Tall and Complex Structures, Butterworth-Heinemann, Oxford, UK.
- Gandomi, A.H., Alavi, A.H. and Yun, G.J. (2011), "Nonlinear modeling of shear strength of SFRC beams using linear genetic programming", Struct. Eng. Mech., Int. J., 38(1), 1-25. https://doi.org/10.12989/sem.2011.38.1.001
- Gharebaghi, S.A. and Zangooei, E. (2017), "Chaotic particle swarm optimization in optimal active control of shear buildings", Struct. Eng. Mech., Int. J., 61(3), 347-357. https://doi.org/10.12989/sem.2017.61.3.347
- Hasni, H., Alavi, A.H., Jiao, P. and Lajnef, N. (2017), "Detection of fatigue cracking in steel bridge girders: a support vector machine approach", Arch. Civil Mech. Eng., 17(3), 609-622. https://doi.org/10.1016/j.acme.2016.11.005
- He, J., Xu, Y.L., Zhang, C.D. and Zhang, X.H. (2015), "Optimum control system for earthquake-excited building structures with minimal number of actuators and sensors", Smart Struct. Syst., Int. J.,16(6), 981-1002. https://doi.org/10.12989/sss.2015.16.6.981
- Hejazi, F., Shoaei, M.D., Tousi, A. and Jaafar, M.S. (2016), "Analytical model for viscous wall dampers", Comput.-Aided Civil Infrastruct. Eng., 31(5), 381-399. https://doi.org/10.1111/mice.12161
- Housner, G., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F., Skelton, R.E., Soong, T.T., Spencer, B.F. and Yao, J.T. (1997), "Structural control: past, present, and future", J. Eng. Mech., 123(9), 897-971. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:9(897)
- Hwang, J.S., Huang, Y.N., Hung, Y.H. and Huang, J.C. (2004), "Applicability of seismic protective systems to structures with vibration-sensitive equipment", J. Struct. Eng., 130(11), 1676-1684. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:11(1676)
- Hwang, J.S., Huang, Y.N. and Hung, Y.H. (2005), "Analytical and experimental study of toggle-brace-damper systems", J. Struct. Eng., 131(7), 1035-1043. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:7(1035)
- Ikeda, Y., Sasaki, K., Sakamoto, M. and Kobori, T. (2001), "Active mass driver system as the first application of active structural control", Earthq. Eng. Struct. Dyn., 30(11), 1575-1595. https://doi.org/10.1002/eqe.82
- Kareem, A., Kijewski, T. and Tamura, Y. (1999), "Mitigation of motions of tall buildings with specific examples of recent applications", Wind Struct., Int. J., 2(3), 201-251. https://doi.org/10.12989/was.1999.2.3.201
- Liu, D.K., Yang, Y.L. and Li, Q.S. (2003), "Optimum positioning of actuators in tall buildings using genetic algorithm", Comput. Struct., 81(32), 2823-2827. https://doi.org/10.1016/j.compstruc.2003.07.002
- Lu, Z., Li, J. and Jia, C. (2018), "Studies on energy dissipation mechanism of an innovative viscous damper filled with oil and silt", Sustainability, 10(6), 1-13. https://doi.org/10.3390/su10061777
- Mahdavi, N., Ahmadi, H.R. and Mahdavi, H. (2012), "A comparative study on conventional push-over analysis method and incremental dynamic analysis (IDA) approach", Scientific Res. Essays, 7(7), 751-773. https://doi.org/10.5897/SRE10.042
- Majeed, A.P.A. Taha, Z. Abdullah, M.A. Azmi, K.Z.M. and Zakaria, M.A. (2018), "The control of an upper extremity exoskeleton for stroke rehabilitation: An active force control scheme approach", Adv. Robot. Res., Int. J., 2(3), 237-245. https://doi.org/10.12989/arr.2018.2.3.237
- Miah, M.S., Chatzi, E.N. and Weber, F. (2015), "Semi-active control for vibration mitigation of structural systems incorporating uncertainties", Smart Mater. Struct., 24(5), 055016. https://doi.org/10.1088/0964-1726/24/5/055016
- Mirfakhraei, S.F., Ahmadi, H.R. and Chan, R. (2020), "Numerical and experimental research on actuator forces in toggled active vibration control system (Part I: Numerical)", Smart Struct. Syst., Int. J., 25(2), 229-240. https://doi.org/10.12989/sss.2020.25.2.229
- Muthalif, A.G., Kasemi, H.B., Nordin, N.H., Rashid, M.M. and Razali, M.K.M. (2017), "Semi-active vibration control using experimental model of magnetorheological damper with adaptive F-PID controller", Smart Struct. Syst., Int. J., 20(1), 85-97. https://doi.org/10.12989/sss.2017.20.1.085
- Najafabadi, A.A., Daneshjoo, F. and Ahmadi, H.R. (2020), "Multiple damage detection in complex bridges based on strain energy extracted from single point measurement", Frontiers Struct. Civil Eng., 14, 722-730. https://doi.org/10.1007/s11709-020-0624-5
- Pantelides, C.P. and Cheng, F.Y. (1990), "Optimal placement of controllers for seismic structures", Eng. Struct., 12(4), 254-262. https://doi.org/10.1016/0141-0296(90)90024-M
- Park, W., Park, K.S., Koh, H.M. and Ha, D.H. (2006), "Wind-induced response control and serviceability improvement of an air traffic control tower", Eng. Struct., 28(7), 1060-1070. https://doi.org/10.1016/j.engstruct.2005.11.013
- Park, W., Park, K.S. and Koh, H.M. (2008), "Active control of large structures using a bilinear pole-shifting transform with H∞ control method", Eng. Struct., 30(11), 3336-3344. https://doi.org/10.1016/j.engstruct.2008.05.009
- Rabczuk, T., Samaniego, E. and Belytschko, T. (2007), "Simplified model for predicting impulsive loads on submerged structures to account for fluid-structure interaction", Int. J. Impact Eng., 34(2), 163-177. https://doi.org/10.1016/j.ijimpeng.2005.08.012
- Rao, A.R.M. and Sivasubramanian, K. (2008), "Optimal placement of actuators for active vibration control of seismic excited tall buildings using a multiple start guided neighbourhood search (MSGNS) algorithm", J. Sound Vib., 311(1-2), 133-159. https://doi.org/10.1016/j.jsv.2007.08.031
- Ras, A. and Boumechra, N. (2016), "Seismic energy dissipation study of linear fluid viscous dampers in steel structure design", Alexandria Eng. J., 55(3), 2821-2832. https://doi.org/10.1016/j.aej.2016.07.012
- Reinhorn, A.M., Viti, S. and Cimellaro, G. (2005), "Retrofit of structures: Strength reduction with damping enhancement", Proceedings of the 37th UJNR Panel Meeting on Wind and Seismic Effects.
- Ricciardelli, F., Pizzimenti, A.D. and Mattei, M. (2003), "Passive and active mass damper control of the response of tall buildings to wind gustiness", Eng. Struct., 25(9), 1199-1209. https://doi.org/10.1016/S0141-0296(03)00068-3
- Shokouhian, M., Shi, Y. and Head, M. (2016), "Interactive buckling failure modes of hybrid steel flexural members", Eng. Struct., 125, 153-166. https://doi.org/10.1016/j.engstruct.2016.07.001
- Sigaher, A.N. and Constantinou, M.C. (2003), "Scissor-jack-damper energy dissipation system", Earthq. Spectra, 19(1), 133-158. https://doi.org/10.1193/1.1540999
- Soong, T.T. and Dargush, G.F. (1997), Passive Energy Dissipation Systems in Structural Engineering, John Wiley & Sons.
- Soong, T.T. and Spencer Jr, B.F. (2002), "Supplemental energy dissipation: state-of-the-art and state-of-the-practice", Eng. Struct., 24(3), 243-259. https://doi.org/10.1016/S0141-0296(01)00092-X
- Spencer Jr, B.F. and Nagarajaiah, S. (2003), "State of the art of structural control", J. Struct. Eng., 129(7), 845-856. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:7(845)
- Spencer, B.F. and Sain, M.K. (1997), "Controlling buildings: a new frontier in feedback", IEEE Control Systems, 17(6), 19-35. https://doi.org/10.1109/37.642972
- Taylor, D.P. (1999a), U.S. Patent No. 5,870,863. Washington, DC: U.S. Patent and Trademark Office.
- Taylor, D.P. (1999b), U.S. Patent No. 5,934,028. Washington, DC: U.S. Patent and Trademark Office.
- Tian, Z., Mokrani, B., Alaluf, D., Jiang, J. and Preumont, A. (2017), "Active tendon control of suspension bridges: Study on the active cables configuration", Smart Struct. Syst., Int. J., 19(5), 463-472. https://doi.org/10.12989/sss.2017.19.5.463
- Vu-Bac, N., Lahmer, T., Zhuang, X., Nguyen-Thoi, T. and Rabczuk, T. (2016), "A software framework for probabilistic sensitivity analysis for computationally expensive models", Adv. Eng. Software, 100, 19-31. https://doi.org/10.1016/j.advengsoft.2016.06.005
- Xu, Y.L. and Teng, J. (2002), "Optimum design of active/passive control devices for tall buildings under earthquake excitation", Struct. Des. Tall Build., 11(2), 109-127. https://doi.org/10.1002/tal.193
- Xu, H.B., Zhang, C.W., Li, H., Tan, P., Ou, J.P. and Zhou, F.L. (2014), "Active mass driver control system for suppressing wind-induced vibration of the Canton Tower", Smart Struct. Syst., Int. J., 13(2), 281-303. https://doi.org/10.12989/sss.2014.13.2.281
- Yamamoto, M., Aizawa, S., Higashino, M. and Toyama, K. (2001), "Practical applications of active mass dampers with hydraulic actuator", Earthq. Eng. Struct. Dyn., 30(11), 1697-1717. https://doi.org/10.1002/eqe.88
- Yamazaki, S., Nagata, N. and Abiru, H. (1992), "Tuned active dampers installed in the Minato Mirai (MM) 21 Landmark Tower in Yokohama", J. Wind Eng. Indust. Aerodyn., 43(1-3), 1937-1948. https://doi.org/10.1016/0167-6105(92)90618-K
- Yang, J.N. and Soong, T.T. (1988), "Recent advances in active control of civil engineering structures", Probabilistic Eng. Mech., 3(4), 179-188. https://doi.org/10.1016/0266-8920(88)90010-0
- Yanik, A. (2019), "Absolute instantaneous optimal control performance index for active vibration control of structures under seismic excitation", Shock Vib., 2019, 4207427. https://doi.org/10.1155/2019/4207427
- Zhan, M., Wang, S., Yang, T., Liu, Y. and Yu, B. (2017), "Optimum design and vibration control of a space structure with the hybrid semi-active control devices", Smart Struct. Syst., Int. J., 19(4), 341-350. https://doi.org/10.12989/sss.2017.19.4.341