Acknowledgement
The research described in this paper was funded by the Australian Research Council (Grant No. DP150102636) and the Natural Science Foundation of China (Grant No. 52002036). Besides, Dr. Yancheng Li of University of Technology Sydney is appreciated for the help in device design and test.
References
- Aguirre, N., Ikhouane, F., Rodellar, J. and Christenson, R. (2012), "Parametric identification of the Dahl model for large scale MR dampers", Struct. Control Hlth., 19(3), 332-347. https://doi.org/10.1002/stc.434
- Aziz, S.A.A., Mazlan, S.A., Ismail, N.I.N. and Choi, S.-B. (2018), "Implementation of functionalized multiwall carbon nanotubes on magnetorheological elastomer", J. Mater. Sci., 53(14), 10122-10134. https://doi.org/10.1007/s10853-018-2315-3
- Bastola, A.K. and Li, L. (2018), "A new type of vibration isolator based on magnetorheological elastomer", Mater. Des., 157, 431-436. https://doi.org/10.1016/j.matdes.2018.08.009
- Behrooz, M., Wang, X. and Gordaninejad, F. (2014), "Modeling of a new semi-active/passive magnetorheological elastomer isolator", Smart Mater. Struct., 23(4), 045013. https://doi.org/10.1088/0964-1726/23/4/045013
- Besdo, D. and Ihlemann, J. (2003), "Properties of rubberlike materials under large deformations explained by self-organizing linkage patterns", Int. J. Plast., 19(7), 1001-1018. https://doi.org/10.1016/S0749-6419(02)00090-6
- Charalampakis, A.E. and Koumousis, V.K. (2008), "Identification of Bouc-Wen hysteretic systems by a hybrid evolutionary algorithm", J. Sound Vib., 314(3-5), 571-585. https://doi.org/10.1016/j.jsv.2008.01.018
- Fu, J., Lai, J., Yang, Z., Bai, J. and Yu, M. (2020), "Fuzzy-neural network control for a magnetorheological elastomer vibration isolation system", Smart Mater. Struct., 29(7), 074001. https://doi.org/10.1088/1361-665X/ab874d
- Hwang, Y., Lee, C.W., Lee, J. and Jung, H.J. (2020), "Feasibility of a new hybrid base isolation system consisting of MR elastomer and roller bearing", Smart Struct. Syst., Int. J., 25(3), 323-335. https://doi.org/10.12989/sss.2020.25.3.323
- Jimenez, R. and Alvarez-Icaza, L. (2005), "LuGre friction model for a magnetorheological damper", Struct. Control Hlth., 12(1), 91-116. https://doi.org/10.1002/stc.58
- Kwok, N., Ha, Q., Nguyen, T., Li, J. and Samali, B. (2006), "A novel hysteretic model for magnetorheological fluid dampers and parameter identification using particle swarm optimization", Sensor Actuat. A-Phys., 132(2), 441-451. https://doi.org/10.1016/j.sna.2006.03.015
- Leng, D., Sun, S., Xu, K. and Liu, G. (2020), "A physical model of magnetorheological elastomer isolator and its dynamic analysis", J. Intell. Mater. Syst. Struct., 31(9), 1141-1156. https://doi.org/10.1177/1045389x20910272
- Li, Y. and Li, J. (2019), "Overview of the development of smart base isolation system featuring magnetorheological elastomer", Smart Struct. Syst., Int. J., 24(1), 37-52. https://doi.org/10.12989/sss.2019.24.1.037
- Li, M.W., Geng, J., Hong, W.C. and Zhang, Y. (2018), "Hybridizing chaotic and quantum mechanisms and fruit fly optimization algorithm with least squares support vector regression model in electric load forecasting", Energies, 11(9), 2226. https://doi.org/10.3390/en11092226
- Lin, S.M. (2013), "Analysis of service satisfaction in web auction logistics service using a combination of Fruit fly optimization algorithm and general regression neural network", Neural Comput. Appl., 22(3-4), 783-791. https://doi.org/10.1007/s00521-011-0769-1
- Mullins, L. and Tobin, N. (1957), "Theoretical model for the elastic behavior of filler-reinforced vulcanized rubbers", Rubber Chem. Technol., 30(2), 555-571. https://doi.org/10.5254/1.3542705
- Neshat, M., Sepidnam, G., Sargolzaei, M. and Toosi, A.N. (2014), "Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications", Artif. Intell. Rev., 42(4), 965-997. https://doi.org/10.1007/s10462-012-9342-2
- Nguyen, X.B., Komatsuzaki, T., Iwata, Y. and Asanuma, H. (2018), "Robust adaptive controller for semi-active control of uncertain structures using a magnetorheological elastomer-based isolator", J. Sound Vib., 434, 192-212. https://doi.org/10.1016/j.jsv.2018.07.047
- Niu, J., Zhong, W., Liang, Y., Luo, N. and Qian, F. (2015), "Fruit fly optimization algorithm based on differential evolution and its application on gasification process operation optimization", Knowl.-Based Syst., 88, 253-263. https://doi.org/10.1016/j.knosys.2015.07.027
- Pan, W.T. (2013), "Using modified fruit fly optimisation algorithm to perform the function test and case studies", Connect. Sci., 25(2-3), 151-160. https://doi.org/10.1080/09540091.2013.854735
- Piatkowski, T. (2014), "Dahl and LuGre dynamic friction models - The analysis of selected properties", Mech. Mach. Theory, 73, 91-100. https://doi.org/10.1016/j.mechmachtheory.2013.10.009
- Sun, S.S., Yang, J., Li, W.H., Du, H., Alici, G., Yan, T.H. and Nakano, M. (2017), "Development of an isolator working with magnetorheological elastomers and fluids", Mech. Syst. Signal Pr., 83, 371-384. https://doi.org/10.1016/j.ymssp.2016.06.020
- Tairidis, G., Foutsitzi, G., Koutsianitis, P. and Stavroulakis, G.E. (2016), "Fine tuning of a fuzzy controller for vibration suppression of smart plates using genetic algorithms", Adv. Eng. Softw., 101, 123-135. https://doi.org/10.1016/j.advengsoft.2016.01.019
- Trivedi, R.R., Pawaskar, D.N. and Shimpi, R.P. (2016), "Optimization of static and dynamic travel range of electrostatically driven microbeams using particle swarm optimization", Adv. Eng. Softw., 97, 1-16. https://doi.org/10.1016/j.advengsoft.2016.01.005
- Wen, Q., Wang, Y. and Gong, X. (2017), "The magnetic field dependent dynamic properties of magnetorheological elastomers based on hard magnetic particles", Smart Mater. Struct., 26(7), 075012. https://doi.org/10.1088/1361-665X/aa7396
- Xin, F.-L., Bai, X.-X. and Qian, L.-J. (2017), "Principle, modeling, and control of a magnetorheological elastomer dynamic vibration absorber for powertrain mount systems of automobiles", J. Intell. Mater. Syst. Struct., 28(16), 2239-2254. https://doi.org/10.1177/1045389X16672731
- Yang, F., Sedaghati, R. and Esmailzadeh, E. (2009), "Development of LuGre friction model for large-scale magneto-rheological fluid dampers", J. Intell. Mater. Syst. Struct., 20(8), 923-937. https://doi.org/10.1177/1045389X08099660
- Yang, J., Du, H., Li, W., Li, Y., Li, J., Sun, S. and Deng, H.X. (2013), "Experimental study and modeling of a novel magnetorheological elastomer isolator", Smart Mater. Struct., 22(11), 117001. https://doi.org/10.1088/0964-1726/22/11/117001
- Ying, Z.G., Ni, Y.Q. and Duan, Y.F. (2017), "Stochastic vibration suppression analysis of an optimal bounded controlled sandwich beam with MR visco-elastomer core", Smart Struct. Syst., Int. J., 19(1), 21-31. https://doi.org/10.12989/sss.2017.19.1.021
- Yousefi, A.M., Samali, B. and Hajirasouliha, I. (2020), "Experimental and numerical investigations of cold-formed austenitic stainless steel unlipped channels under bearing loads", Thin Wall. Struct., 152, 106768. https://doi.org/10.1016/j.tws.2020.106768
- Zhang, X. and Li, W. (2009), "Adaptive tuned dynamic vibration absorbers working with MR elastomers", Smart Struct. Syst., Int. J., 5(5), 517-529. https://doi.org/10.12989/sss.2009.5.5.517
- Zhang, X., Lu, X., Jia, S. and Li, X. (2018), "A novel phase angle-encoded fruit fly optimization algorithm with mutation adaptation mechanism applied to UAV path planning", Appl. Soft. Comput., 70, 371-388. https://doi.org/10.1016/j.asoc.2018.05.030
- Zhou, X., Sun, J., Li, H., Lu, M. and Zeng, F. (2020), "PMSM open-phase fault-tolerant control strategy based on four-leg inverter", IEEE T. Power Electr., 35(3), 2799-2808. https://doi.org/10.1109/TPEL.2019.2925823
- Zhu, W. and Rui, X.T. (2014), "Semiactive vibration control using a magnetorheological damper and a magnetorheological elastomer based on the bouc-wen model", Shock Vib., 2014, 405412. https://doi.org/10.1155/2014/405421