DOI QR코드

DOI QR Code

Jumps phenomenon elimination of a Duffing oscillator using pole placement control method

  • Mahmoudi, Reza (Faculty of Civil Engineering, University of Tabriz) ;
  • Ghaffarzadeh, Hosein (Faculty of Civil Engineering, University of Tabriz) ;
  • Yang, T.Y. (Department of Civil Engineering, University of British Columbia)
  • 투고 : 2019.06.01
  • 심사 : 2021.09.30
  • 발행 : 2021.11.25

초록

This paper presents a numerical and analytical study in the time-frequency domain to control the bifurcation and instability in a forced Duffing oscillator by a linear state feedback control. The proposed method evolves minimizing computational expenses of analytical approaches by an approximate method to suppress the responses of the dynamical system based on pole placement theory. The instability frequency range of Duffing oscillator is identified by approximate analytical methods. Bifurcation and jump points of Duffing oscillator are identified in the frequency domain by perturbation and harmonic balance methods for average and strong nonlinearity of the system, respectively. The Caughey method is used to linearize Duffing oscillator to solve system in the state space form. A linear state feedback controller with pole placement is applied to system in the time domain. The observed controlling force is added to approximate solution equation in frequency domain which vanished bifurcation length. The results reveal that the proposed method can be beneficial in reducing dynamic responses and eliminating jump points of system with high accuracy.

키워드

참고문헌

  1. Agiza, H.N. and Yassen, M.T. (2001), "Synchronization of Rossler and Chen chaotic dynamical systems using active control", 278(4), 191-197. https://doi.org/10.1016/S0375-9601(00)00777-5
  2. Baghaei, K., Ghaffarzadeh, H., Hadigheh, A. and Dias-da-Costa, D. (2019), "Chattering-free sliding mode control with a fuzzy model for structural applications", Struct. Eng. Mech., Int. J., 69(3), 307-315. http://doi.org/10.12989/sem.2019.69.3.307
  3. Beltran-Carbajal, F. and Silva-Navarro, G. (2014), "Active vibration control in Duffing mechanical systems using dynamic vibration absorbers", J. Sound Vib., 333, 3019-3030. https://doi.org/10.1016/j.jsv.2014.03.002
  4. Brennan, M.J., Kovacic, I., Carrella, A. and Waters, T.P. (2008), "On the jump-up and jump-down frequencies of the Duffing oscillator", J. Sound Vib., 318, 1250-1261. https://doi.org/10.1016/j.jsv.2008.04.032
  5. Chang, R.J. (2017), "Extension of nonlinear stochastic solution to include sinusoidal excitation illustrated by Duffing oscillator", J. Computat. Nonlinear Dyn., 12(5), 051030. https://doi.org/10.1115/1.4037105
  6. Chen, X. and Liu, C. (2010), "Passive control on a unified chaotic system", Nonlinear Anal.: Real World Applicat., 11, 683-687. https://doi.org/10.1016/j.nonrwa.2009.01.014
  7. Chen, S. and Lu, J. (2002), "Synchronization of an uncertain chaotic system via adaptive control", Chaos Solit. Fract., 14, 643-647. https://doi.org/10.1016/S0960-0779(02)00006-1
  8. Contreras-Lopez, J., Ornelas-Tellez, F. and Espinosa-Juarez, E. (2019), "Nonlinear optimal control for reducing vibrations in civil structures using smart devices", Smart Struct. Syst, Int. J., 23(3), 307-318. http://doi.org/10.12989/sss.2019.23.3.307
  9. Dinca, F. and Teodosiu, C. (1973), "Nonlinear and Random Vibrations", SIAM Review, 17(3), 578. https://doi.org/10.1137/1017063
  10. Efimov, D. and Perruquetti, W. (2016), "On condition of oscillations and multi-homogeneity", Math. Control Signals Syst., 28(1), 1-37. https://doi.org/10.1007/s00498-015-0157-y
  11. Elabbasy, E.M., Agiza, H.N. and El-Dessoky, M.M. (2004), "Synchronization of modified Chen system", Int. J. Bifurc. Chaos, 14, 3969-3979. https://doi10.1142/S0218127404011740
  12. Friswell, M.I. and Penny, J.E.T. (1994), "The accuracy of jump frequencies in series solutions of the response of a Duffing oscillator", J. Sound Vib., 169(2), 261-269. https://doi 10.1006/jsvi.1994.1018
  13. Ghandchi-Tehrani, M., Wilmshurst, L.I. and Elliott, S.J. (2015), "Bifurcation control of a Duffing oscillator using pole placement", J. Vib. Control, 21(14), 2838-2851. https://doi.org/10.1177/1077546313517586
  14. Glendinning, P. (1994), Stability, Instability and Chaos: an Introduction to the Theory of Nonlinear Differential Equations, Cambridge University Press, Cambridge, UK.
  15. Jezequel, L. and Lamarque, C.H. (1991), "Analysis of nonlinear dynamic systems by the normal form theory", J. Sound Vib., 149(3), 429-459. https://doi.org/10.1016/0022-460X(91)90446-Q
  16. Kovacic, I. and Brennan, M.J. (2011), The Duffing equation: nonlinear oscillators and their behaviour, John Wiley, London, UK.
  17. Krack, M. and Gross, J. (2019), Harmonic balance for nonlinear vibration problems, Springer International Publishing. https://doi.org/10.1007/978-3-030-14023-6
  18. Lei, Y., Xu, W., Shen, J. and Fang, T. (2006), "Global synchronization of two parametrically excited Systems using active control", Chaos Solit. Fract., 28, 428-436. https://doi.org/10.1016/j.chaos.2005.05.043
  19. Loria, A., Panteley, E. and Nijmeijer, H. (1998), "Control of the chaotic Duffing equation with uncertainty in all parameters", IEEE Transact. Circuits Syst. I: Fundamental Theory and Applications, 45(12), 1252-1255. http://doi.org/10.1109/81.736558
  20. Luo, X.S., Zhang, B. and Qin, Y.H. (2010), "Controlling chaos in space-clamped FitzHugh-Nagumo neuron by adaptive passive method", Nonlinear Anal.: Real World Applicat., 11, 1752-1759. https://doi.org/10.1016/j.nonrwa.2009.03.029
  21. Mahmoud, G.M., Aly, S.A. and Farghaly, A.A. (2007), "On chaos synchronization of a complex two coupled dynamos system", Chaos Solit. Fract., 33, 178-187. https://doi.org/10.1016/j.chaos.2006.01.036
  22. Mahmoudi, R., Ghaffarzadeh, H., Ahani, E. and Katebi, J. (2019), "Sliding mode control of linear structures and a Duffing system using active tendons", Proceedings of the Institution of Civil Engineers - Eng. Computat. Mech., 172(3), 106-117. https://doi.org/10.1680/jencm.18.00033
  23. Murata, A., Kume, Y. and Hashimoto, F. (1987), "Application of catastrophe theory to the forced vibration of a diaphragm air spring", J. Sound Vib., 112(1), 31-44. https://10.1016/S0022-460X(87)80091-3
  24. Nayfeh, A.H., Mook, D.T. and Holmes, P. (1980), Nonlinear Oscillations, Wiley, New York, USA.
  25. Newland, D.E. (1993), Introduction to Random Vibrations, Spectral and Wavelet Analysis, New York: Longman.
  26. Ott, E., Grebogi, C. and Yorke, J.A. (1990), "Controlling chaos", Phys. Rev. Lett., 64(11), 1196-1199. https://doi.org/10.1103/PhysRevLett.64.1196
  27. Park, J.H. (2005a), "Chaos synchronization of a chaotic system via nonlinear control", Chaos Solit. Fract., 25, 579-584. https://doi.org/10.1016/j.chaos.2004.11.038
  28. Park, J.H. (2005b), "On synchronization of unified chaotic systems via nonlinear control", Chaos Solit. Fract., 25, 699-704. https://doi.org/10.1016/j.chaos.2004.11.031
  29. Park, J.H. (2006), "Synchronization of Genesio chaotic system via back-stepping approach", Chaos Solit. Fract., 27, 1369-1375. https://doi.org/10.1016/j.chaos.2005.05.001
  30. Peleg, K. (1979), "Frequency response of non-linear single degree-of-freedom systems", Int. J. Mech. Sci., 21, 75-84. https://doi.org/10.1016/S0022-460X(85)80150-4
  31. Seemann, W. and Gausmann, R. (2001), "A note on the strong nonlinear behavior of piezoceramics excited with a weak electric field", SPIE Smart Struct. Mater., 4333, 131-140. https://doi.org/10.1117/12.432749
  32. Storer, D.M. and Tomlinson, G.R. (1993), "Recent developments in the measurement and interpretation of higherorder transfer functions from nonlinear structures", Mech. Syst. Signal Process., 7(2), 173-189. https://doi.org/10.1006/mssp.1993.1006
  33. Ucar, A., Lonngren, K.E. and Bai, E.W. (2006), "Synchronization of the unified chaotic systems via active control", Chaos Solit. Fract., 27, 1292-1297. https://doi.org/10.1016/j.chaos.2005.04.104
  34. Verhulst, F. (1996), Nonlinear Differential Equations and Dynamical Systems, Springer, New York, USA.
  35. Wagg, D. and Neild, S. (2010), Nonlinear Vibration with Control, Springer, New York, USA.
  36. Wang, Y., Guan, Z.H. and Wang, H.O. (2003), "Feedback and adaptive control for the synchronization of Chen system via a single variable", Phys. Lett. A, 312, 34-40. https://doi.org/10.1016/S0375-9601(03)00573-5
  37. Worden, K. (1996), "On jump frequencies in the response of a Duffing oscillator", J. Sound Vib., 198(4), 522-525. https://doi.org/10.1006/jsvi.1996.0586
  38. Worden, K. and Tomlinson, G.R. (2001), Nonlinearity in Structural Dynamics, Detection, Identification and Modelling, University of Sheffield, UK.
  39. Wu, J., Chen, W., Yang, F., Li, J. and Zhu, Q. (2015), "Global adaptive neural control for strict-feedback time- delay systems with predefined output accuracy", Inform. Sci., 301, 27-43. https://doi.org/10.1016/j.ins.2014.12.039