Acknowledgement
The authors declare no conflicts of interest. This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (#19K22828, M. Iemitsu).
References
- Vaitkevicius PV, Fleg JL, Engel JH, O'Connor FC, Wright JG, Lakatta LE, Yin FC, Lakatta EG. Effects of age and aerobic capacity on arterial stiffness in healthy adults. Circulation. 1993;88:1456-62. https://doi.org/10.1161/01.CIR.88.4.1456
- Arnett DK, Evans GW, Riley WA. Arterial stiffness: a new cardiovascular risk factor? Am J Epidemiol. 1994;140:669-82. https://doi.org/10.1093/oxfordjournals.aje.a117315
- Blacher J, Asmar R, Djane S, London GM, Safar ME. Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients. Hypertension. 1999;33:1111-7. https://doi.org/10.1161/01.hyp.33.5.1111
- Laurent S, Boutouyrie P, Asmar R, I Gautier, B Laloux, L Guize, P Ducimetiere, A Benetos. Aortic stiffness is an independent predictor of all-cause and cardiovascular mortality in hypertensive patients. Hypertension. 2001;37:1236-41. https://doi.org/10.1161/01.hyp.37.5.1236
- Rowe JW. Clinical consequences of age-related impairments in vascular compliance. Am J Cardiol. 1987;60:68G-71G. https://doi.org/10.1016/0002-9149(87)90594-7
- Mohiaddin RH, Underwood SR, Bogren HG, Firmin DN, Klipstein RH, Rees RS, Longmore DB. Regional aortic compliance studied by magnetic resonance imaging: the effects of age, training, and coronary artery disease. Br Heart J. 1989;62:90-6. https://doi.org/10.1136/hrt.62.2.90
- Tanaka H, DeSouza CA, Seals DR. Absence of age-related increase in central arterial stiffness in physically active women. Arterioscler Thromb Vasc Biol. 1998;18:127-32. https://doi.org/10.1161/01.ATV.18.1.127
- Tanaka H, Dinenno FA, Monahan KD, Clevenger CM, DeSouza CA, Seals DR. Aging, habitual exercise, and dynamic arterial compliance. Circulation. 2000;102:1270-5. https://doi.org/10.1161/01.CIR.102.11.1270
- Napoli C, de Nigris F, Williams-Ignarro S, Pignalosa O, Sica V, Ignarro LJ. Nitric oxide and atherosclerosis: an update. Nitric Oxide. 2006;15:265-79. https://doi.org/10.1016/j.niox.2006.03.011
- Antoniades C, Shirodaria C, Leeson P, Antonopoulos A, Warrick N, Van-Assche T, Cunnington C, Tousoulis D, Pillai R, Ratnatunga C, Stefanadis C, Channon KM. Association of plasma asymmetrical dimethylarginine (ADMA) with elevated vascular superoxide production and endothelial nitric oxide synthase uncoupling: implications for endothelial function in human atherosclerosis. Eur Heart J. 2009;30:1142-50. https://doi.org/10.1093/eurheartj/ehp061
- Boger RH. Asymmetric dimethylarginine (ADMA): a novel risk marker in cardiovascular medicine and beyond. Ann Med. 2006;38:126-36. https://doi.org/10.1080/07853890500472151
- Antoniades C, Demosthenous M, Tousoulis D, Antonopoulos AS, Vlachopoulos C, Toutouza M, Marinou K, Bakogiannis C, Mavragani K, Lazaros G, Koumallos N, Triantafyllou C, Lymperiadis D, Koutsilieris M, Stefanadis C. Role of asymmetrical dimethylarginine in inflammation-induced endothelial dysfunction in human atherosclerosis. Hypertension. 2011;58:93-8. https://doi.org/10.1161/hypertensionaha.110.168245
- Boger RH, Sullivan LM, Schwedhelm E, Wang TJ, Maas R, Benjamin EJ, Schulze F, Xanthakis V, Benndorf RA, Vasan RS. Plasma asymmetric dimethylarginine and incidence of cardiovascular disease and death in the community. Circulation. 2009;119:1592-600. https://doi.org/10.1161/CIRCULATIONAHA.108.838268
- Schnabel R, Blankenberg S, Lubos E, Lackner KJ, Rupprecht HJ, Espinola-Klein C, Jachmann N, Post F, Peetz D, Bickel C, Cambien F, Tiret L, Munzel T. Asymmetric dimethylarginine and the risk of cardiovascular events and death in patients with coronary artery disease: results from the AtheroGene Study. Circ Res. 2005;97:e53-9.
- Kielstein JT, Bode-Boger SM, Frolich JC, Ritz E, Haller H, Fliser D. Asymmetric dimethylarginine, blood pressure, and renal perfusion in elderly subjects. Circulation. 2003;107:1891-5. https://doi.org/10.1161/01.CIR.0000060496.23144.A7
- Ngo DT, Sverdlov AL, McNeil JJ, Horowitz JD. Correlates of arterial stiffness in an ageing population: role of asymmetric dimethylarginine. Pharmacol Res. 2009;60:503-7. https://doi.org/10.1016/j.phrs.2009.06.006
- Tanabe T, Maeda S, Miyauchi T, Iemitsu M, Takanashi M, Irukayama-Tomobe Y, Yokota T, Ohmori H, Matsuda M. Exercise training improves ageing-induced decrease in eNOS expression of the aorta. Acta Physiol Scand. 2003;178:3-10. https://doi.org/10.1046/j.1365-201X.2003.01100.x
- Fujie S, Hasegawa N, Horii N, Inoue K, Uchida M, Iemitsu M. Effects of combined exercise training and Chlorella intake on vasorelaxation mediated by nitric oxide in aged mice. Appl Physiol Nutr Metab. In press.
- Fujie S, Hasegawa N, Sato K, Fujita S, Sanada K, Hamaoka T, Iemitsu M. Aerobic exercise training-induced changes in serum adropin level are associated with reduced arterial stiffness in middle-aged and older adults. Am J Physiol Heart Circ Physiol. 2015;309:H1642-7. https://doi.org/10.1152/ajpheart.00338.2015
- Gomes VA, Casella-Filho A, Chagas AC, Tanus-Santos JE. Enhanced concentrations of relevant markers of nitric oxide formation after exercise training in patients with metabolic syndrome. Nitric Oxide. 2008;19:345-50. https://doi.org/10.1016/j.niox.2008.08.005
- Maeda S, Miyaki A, Kumagai H, Eto M, So R, Tanaka K, Ajisaka R. Lifestyle modifcation decreases arterial stiffness and plasma asymmetric dimethylarginine level in overweight and obese men. Coron Artery Dis. 2013;24:583-8. https://doi.org/10.1097/MCA.0b013e3283647a99
- Mittermayer F, Pleiner J, Krzyzanowska K, Wiesinger GF, Francesconi M, Wolzt M. Regular physical exercise normalizes elevated asymmetrical dimethylarginine concentrations in patients with type 1 diabetes mellitus. Wien Klin Wochenschr. 2005;117:816-20. https://doi.org/10.1007/s00508-005-0476-y
- Richter B, Niessner A, Penka M, Grdic M, Steiner S, Strasser B, Ziegler S, Zorn G, Maurer G, Simeon-Rudolf V, Wojta J, Huber K. Endurance training reduces circulating asymmetric dimethylarginine and myeloperoxidase levels in persons at risk of coronary events. Thromb Haemost. 2005;94:1306-11. https://doi.org/10.1160/TH05-06-1306
- Schlager O, Giurgea A, Schuhfried O, Seidinger D, Hammer A, Groger M, Fialka-Moser V, Gschwandtner M, Koppensteiner R, Steiner S. Exercise training increases endothelial progenitor cells and decreases asymmetric dimethylarginine in peripheral arterial disease: a randomized controlled trial. Atherosclerosis. 2011;217:240-8. https://doi.org/10.1016/j.atherosclerosis.2011.03.018
- Tanahashi K, Akazawa N, Miyaki A, Choi Y, Ra SG, Matsubara T, Kumagai H, Oikawa S, Maeda S. Aerobic exercise training decreases plasma asymmetric dimethylarginine concentrations with increase in arterial compliance in postmenopausal women. Am J Hypertens. 2014;27:415-21. https://doi.org/10.1093/ajh/hpt217
- Nakamura A, Kajitani S, Sato K, Kanazawa M, Kondo M, Endo H, Nozaki E. Decline of popliteal artery flow-mediated dilation with aging and possible involvement of asymmetric dimethylarginine in healthy men. J Med Ultrason. 2019;46:503-11. https://doi.org/10.1007/s10396-019-00946-2
- Weinberger MH, Fineberg NS, Fineberg SE. Effects of age, race, gender, blood pressure, and estrogen on arterial compliance. Am J Hypertens. 2002;15:358-63. https://doi.org/10.1016/S0895-7061(02)02261-6
- Tanaka H, Monahan KD, Seals DR. Age-predicted maximal heart rate revisited. J Am Coll Cardiol. 2001;37:153-6. https://doi.org/10.1016/S0735-1097(00)01054-8
- Kawano H, Tanaka H, Miyachi M. Resistance training and arterial compliance: keeping the benefts while minimizing the stiffening. J Hypertens. 2006;24:1753-9. https://doi.org/10.1097/01.hjh.0000242399.60838.14
- Cvetkovic TP, Stefanovic NZ, Velickovic-Radovanovic RM, Paunovic GJ, Djordjevic VM, Stojanovic DR, Stojanovic IR, Pavlovic DD. Sex differences in oxidative and nitrosative stress parameters in kidney transplant patients on tacrolimus-based immunosuppression. Int Urol Nephrol. 2014;46:1217-24. https://doi.org/10.1007/s11255-013-0577-x
- Ardigo D, Stuehlinger M, Franzini L, Valtuena S, Piatti PM, Pachinger O, Reaven GM, Zavaroni I. ADMA is independently related to fow-mediated vasodilation in subjects at low cardiovascular risk. Eur J Clin Investig. 2007;37:263-9. https://doi.org/10.1111/j.1365-2362.2007.01781.x
- Protopsaltis I, Foussas S, Angelidi A, Gritzapis A, Sergentanis TN, Matsagos S, Tzirogiannis K, Panoutsopoulos GI, Dimitriadis G, Raptis S, Melidonis A. Impact of ADMA, endothelial progenitor cells and traditional cardiovascular risk factors on pulse wave velocity among prediabetic individuals. Cardiovasc Diabetol. 2012;11:141. https://doi.org/10.1186/1475-2840-11-141
- Pope AJ, Karuppiah K, Cardounel AJ. Role of the PRMT-DDAH-ADMA axis in the regulation of endothelial nitric oxide production. Pharmacol Res. 2009; 60: 461-5. https://doi.org/10.1016/j.phrs.2009.07.016
- Chen Y, Xu X, Sheng M, Zhang X, Gu Q, Zheng Z. PRMT-1 and DDAHs-induced ADMA upregulation is involved in ROS- and RAS-mediated diabetic retinopathy. Exp Eye Res. 2009;89:1028-34. https://doi.org/10.1016/j.exer.2009.09.004
- Chen X, Li H, Wang Z, Zhou Q, Chen S, Yang B, Yin D, He H, He M. Quercetin protects the vascular endothelium against iron overload damages via ROS/ADMA/DDAHII/eNOS/NO pathway. Eur J Pharmacol. 2020;868:172885. https://doi.org/10.1016/j.ejphar.2019.172885