Acknowledgement
The publication prepared on the results of the research task carried out under the statutory activities of the Central Institute for Labour Protection, National Research Institute (I-55).
References
- Koivisto AJ, Bluhme AB, Kling KI et al (2018) Occupational exposure during handling and loading of halloysite nanotubes-a case study of counting nanofibers. NanoImpact 10:153-160. https://doi.org/10.1016/j.impact.2018.04.003
- Satish S, Tharmavaram M, Rawtani D (2019) Halloysite nanotubes as a nature's boon for biomedical applications. Nanobiomedicine 6:1-16. https://doi.org/10.1177/1849543519863625
- Chiriaco F, Conversano F, Sbenaglia EA, ciaro S, Leporatti S, Lay-Ekuakille A (2014) Cytotoxicity measurements of Halloysite Nanotubes for nanomedicine applications. In: IEEE international symposium on medical measurements and applications (MeMeA), pp 1-4. https://doi.org/10.1109/MeMeA.2014.6860126
- Kelly H, Deasy P, Ziaka E, Claffey N (2004) Formulation and preliminary in vivo dog studies of a novel drug delivery system for the treatment of periodontitis. Int J Pharm 274:167-183. https://doi.org/10.1016/j.ijpharm.2004.01.019
- Kommireddy D, Ichinose I, Lvov YM, Mills D (2005) Nanoparticle multilayer: surface modification for cell attachment and growth. J Biomed Nanotechnol 1:286-290. https://doi.org/10.1166/jbn.2005.046
- Shi YF, Tian Z, Zhang Y, Shen HB, Jia NQ (2011) Functionalized halloysite nanotube-based carrier for intracellular delivery of antisense oligonucleotides. Nanoscale Res Lett 6:608-614. https://doi.org/10.1186/1556-276X-6-608
- Vergaro V, Lvov YM, Leporatti S (2012) Halloysite clay nanotubes for resveratrol delivery to cancer cells. Macromol Biosci 12:1265-1271. https://doi.org/10.1002/mabi.201200121
- Hughes AD, Mattinson J, Powderly JD, Greene BT, King MR (2012) Rapid isolation of viable circulating tumor cells from patient blood samples. J Vis Exp 64:4248. https://doi.org/10.3791/4248
- Kamble R, Ghag M, Gaikawad S, Panda BK (2012) Halloysite nanotubes and applications: a review. J Adv Sci Res 3:25-29
- Rawtani D, Agrawal YK (2012) Multifarious applications of halloysite nanotubes: a review. Rev Adv Mater Sci 30:282-295
- Yuan P, Tan D, Annabi-Bergaya F (2015) Properties and applications of halloysite nanotubes: recent research advances and future prospects. Appl Clay Sci 112-113:75-93. https://doi.org/10.1016/j.clay.2015.05.001
- Zhang Y, Tang A, Yang H, Ouyang J (2016) Applications and interfaces of halloysite nanocomposites. Appl Clay Sci 119:8-17. https://doi.org/10.1016/j.clay.2015.06.034
- Luo P, Zhao Y, Zhang B, Liu J, Yang Y, Liu J (2010) Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes. Water Res 44:1489-1497. https://doi.org/10.1016/j.watres.2009.10.042
- Saber AT, Lamson JS, Jacobsen NR, Ravn-Haren G et al (2013) Particle-induced pulmonary acute phase response correlates with neutrophil influx linking inhaled particles and cardiovascular risk. PLoS ONE e69020:20138. https://doi.org/10.1371/journal.pone.0069020
- Poulsen SS, Saber AT, Williams A et al (2015) MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs. Toxicol Appl Pharmacol 284:16-32. https://doi.org/10.1016/j.taap.2014.12.011
- Jaurand MC (2017) An overview on the safety of tubular clay minerals. Dev Clay Sci 7:485-508. https://doi.org/10.1016/B978-0-08-100293-3.00020-0
- Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55-63. https://doi.org/10.1016/0022-1759(83)90303-4
- Puck TT, Markus PI (1956) Action of X-rays on mammalian cells. J Exp Med 103:653-666. https://doi.org/10.1084/jem.103.5.653
- Herzog E, Casey A, Lyng FM, Chambers G, Byrne HJ, Davoren M (2007) A new approach to the toxicity testing of carbon-based nanomaterials-the clonogenic assay. Toxicol Lett 174:49-60. https://doi.org/10.1016/j.toxlet.2007.08.009
- Franken N, Rodermond HM, Stap J, Haverman J, van Bree C (2006) Clonogenic assay of cells in virto. Nat Protoc 1:2315-2319. https://doi.org/10.1038/nprot.2006.339
- Kruszewski M, Gradzka I, Bartlomierczyk T, Chwastowska J, Sommer S et al (2013) Oxidative DNA damage corresponds to the long term survival of human cells treated with silver nanoparticles. Toxicol Lett 219:151-159. https://doi.org/10.1016/j.toxlet.2013.03.006
- Zhang XD, Wu D, Shen X, Chen J, Sun YM, Liu PX, Liang XJ (2012) Size-dependent radiosensitization of PEG-coated gold nanoparticles for cancer radiation therapy. Biomaterials 33:6408-6419. https://doi.org/10.1016/j.biomaterials.2012.05.047
- Montes-Burgos I, Walczyk D, Hole P, Smith J, Lynch I, Dawson K (2010) Characterisation of nanoparticle size and state prior to nanotoxicological studies. J Nanopart Res 12:47-53. https://doi.org/10.1007/s11051-009-9774-z
- Gaaz TS, Sulong AB, Akhtar MN, Raza MR (2015) Morphology and tensile properties of thermoplastic polyurethane-halloysite nanotube nanocomposites. Int J Automot Mech Eng 12:2844-2856. https://doi.org/10.15282/ijame.12.2015.4.0239
- Lanone S, Rogerieux F, Geys J, Boczkowski J, Lacroix G, Dupont A, Maillot-Marechal E, Hoet P (2009) Comparative toxicity 27 manufactured nanomaterials in human alveolar epithelial and macrophage cell lines. Part Fibre Toxicol 6:14. https://doi.org/10.1186/1743-8977-6-14
- Cho W-S, Duffin R, Bradley M et al (2013) Predictive value of in vitro assays depends on the mechanism of toxicity of metal oxide nanoparticles. Part Fibre Toxicol 10:55. https://doi.org/10.1186/1743-8977-10-55
- Hillegass JM, Shukla A, Lathrop SA, MacPherson MB, Fukagawa NK, Mossman BT (2010) Assessing nanotoxicity in cells in vitro. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:219-231. https://doi.org/10.1002/wnan.54
- Lu X, Qian J, Zhou H et al (2011) In vitro cytotoxicity and induction of apoptosis by silica nanoparticles in human HepG2 hepatoma cells. Int J Nanomed 6:1889-1901. https://doi.org/10.2147/IJN.S24005
- Sood A, Salih S, Roh D et al (2011) Signalling of DNA damage and cytokines across cell barriers exposed to nanoparticles depends on barrier thickness. Nat Nanotechnol 6:824-833. https://doi.org/10.1038/nnano.2011.188
- Hempel SL, Buettner GR, O'Malley YQ, Wessels DA, Flaherty DM (1999) Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2,7-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2,7-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic Biol Med 27:146-159. https://doi.org/10.1016/s0891-5849(99)00061-1
- Jakubowski W, Bartosz G (2000) 2,7-dichlorofluorescin oxidation and reactive oxygen species: what does it measure? Cell Biol Int 24:757-760. https://doi.org/10.1006/cbir.2000.0556
- Souza TA, Franchi LP, Rosa LR, da Veiga MA, Takahashi CS (2016) Cytotoxicity and genotoxicity of silver nanoparticles of different sizes in CHO-K1 and CHO-XRS5 cell lines. Mutat Res Genet 795:70-83. https://doi.org/10.1016/j.mrgentox.2015.11.002
- Bahadar H, Maqbool F, Niaz K, Abdollahi M (2016) Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 20:1-11. https://doi.org/10.7508/ibj.2016.01.001
- Bhabra G, Sood A, Fisher B et al (2009) Nanoparticles can cause DNA damage across a cellular barrier. Nature Nanotech 4:876-883. https://doi.org/10.1038/nnano.2009.313
- Rim KT, Song SW, Kim HY (2013) Oxidative DNA damage from nanoparticle exposure and its application to workers' health: a literature review. Saf Health Work 4:177-186. https://doi.org/10.1016/j.shaw.2013.07.006
- Vergaro V, Abdullayev E, Lvov YM, Zeitoun A, Cingolani R, Rinaldi R, Leporatti S (2010) Cytocompatibility and uptake of Halloysite clay nanotubes. Biomacromol 11:820-826. https://doi.org/10.1021/bm9014446
- Verma NK, Moore E, Blau W, Volkov Y, Babu PR (2012) Cytotoxicity evaluation of nanoclays in human epithelial cell line A549 using high content screening and real-time impedance analysis. J Nanopart Res 14:1137. https://doi.org/10.1007/s11051-012-1137-5
- Lai X, Agarwal M, Lvov YM, Pachpande C, Varahramyan K, Witzmann FA (2013) Proteomic profiling of Halloysite clay nanotube exposure in intestinal cell co-culture. J Appl Toxicol 33:1316-1329. https://doi.org/10.1002/jat.2858
- Ahmed FR, Shoaib MH, AzharM, Um SH, Yousuf RI, Hasmi S, Dar A (2015) In-vitro assessment of cytotoxicity of halloysite nanotubes against HepG2, HCT116 and human peripheral blood lymphocytes. Colloids Surf B 135:50-55. https://doi.org/10.1016/j.colsurfb.2015.07.021
- Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE (2005) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 155:377-384. https://doi.org/10.1016/j.toxlet.2004.11.004
- Casey A, Herzog E, Davoren M, Lyng FM, Byrne HJ, Chambers G (2007) Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity. Carbon 45:1425-1432. https://doi.org/10.1016/j.carbon.2007.03.033
- Ponti J, Colognato R, Rauscher H, Gioria S, Broggi F, Franchini F, Pascual C, Giudetti G, Rossi F (2010) Colony forming efficiency and microscopy analysis of multi-wall carbon nanotubes cell interaction. Toxicol Lett 197:29-37. https://doi.org/10.1016/j.toxlet.2010.04.018
- Xia T, Kovochich M, Liong M, Zink JI, Nel AE (2008) Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 1:85-96. https://doi.org/10.1021/nn700256c
- Chen Q, Wang N, Zhu M, Lu J, Zhong H, Xue X, Guo S, Li M, Wei X, Tao Y, Yin H (2018) TiO2 nanoparticles cause mitochondrial dysfunction, activate inflammatory responses, and attenuate phagocytosis in macrophages: a proteomic and metabolomic insight. Redox Biol 15:266-276. https://doi.org/10.1016/j.redox.2017.12.011
- Fu PP, Xia Q, Hwang HM, Ray PC, Yu H (2014) Mechanisms of nanotoxicity: generation of reactive oxygen species. J Food Drug Anal 22:64-75. https://doi.org/10.1016/j.jfda.2014.01.005
- Lyakhovich VV, Vavilin VA, Zenkov NK, Menshchikova EB (2006) Active defense under oxidative stress. The antioxidant responsive element. Biochemistry-Moscow 71:962-974. https://doi.org/10.1134/s0006297906090033
- Garcia de la Cadena S, Massieu L (2016) Caspases and their role in inflammation and ischemic neuronal death. Focus on caspase-12. Apoptosis 21:763-777. https://doi.org/10.1007/s10495-016-1247-0
- Liu HY, Du L, Zhao YT, Tian WQ (2015) In vitro hemocompatibility and cytotoxicity evaluation of halloysite nanotubes for biomedical application. J Nanomater 2:1-9. https://doi.org/10.1155/2015/685323
- Santimano MC, Martin A, Kowshik M, Sarkar A (2013) Zinc oxide nanoparticles cause morphological changes in human a549 cell line through alteration in the expression pattern of small GTPases at mRNA level. J Bionanosci 7:300-306. https://doi.org/10.1166/jbns.2013.1134
- Valentini X, Deneufbourg P, Paci P, Rugira P, Laurent S, Frau A, Stanicki D, Ris L, Nonclercq D (2018) Morphological alterations induced by the exposure to TiO2 nanoparticles in primary cortical neuron cultures and in the brain of rats. Toxicol Rep 5:878-889. https://doi.org/10.1016/j.toxrep.2018.08.006
- Sooklert K, Wongjarupong A, Cherdchom S, Wongjarupong N, Jindatip D, Phungnoi Y, Rojanathanes R, Sereemaspun A (2019) Molecular and morphological evidence of hepatotoxicity after silver nanoparticle exposure: a systematic review, in silico, and ultrastructure investigation. Toxicol Res 35:257-270. https://doi.org/10.5487/TR.2019.35.3.257
- Schaeublin NM, Braydich-Stolle LK, Schrand AM, Miller JM, Hutchison J, Schlager JJ, Hussain SM (2011) Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale 3:410-420. https://doi.org/10.1039/c0nr00478b
- Plascencia-Villa G, Starr CR, Armstrong LS, Ponce A, Jose-Yacaman M (2012) Imaging interactions of metal oxide nanoparticles with macrophage cells by ultra-high resolution scanning electron microscopy techniques. Integr Biol (Camb) 4:1358-1366. https://doi.org/10.1039/c2ib20172k
- Srikanth K, Pereira E, Duarte AC, Rao JV (2016) Evaluation of cytotoxicity, morphological alterations and oxidative stress in Chinook salmon cells exposed to copper oxide nanoparticles. Protoplasma 253:873-884. https://doi.org/10.1007/s00709-015-0849-7
- Martin A, Sarkar A (2019) Epithelial to mesenchymal transition, eIF2α phosphorylation and Hsp70 expression enable greater tolerance in A549 cells to TiO2. Sci Rep 9:436. https://doi.org/10.1038/s41598-018-36716-2
- Weeks SE, Metge BJ, Samant RS (2019) The nucleolus: a central response hub for the stressors that drive cancer progression. Cell Mol Life Sci 76:4511-4524. https://doi.org/10.1007/s00018-019-03231-0