DOI QR코드

DOI QR Code

Teratogenic effects of ethanol extract of Curcuma mangga Val. rhizomes in wistar rats

  • Yuandani, Yuandani (Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara) ;
  • Tarigan, Krisna Sandra Amalia (Department of Pharmacology, Faculty of Pharmacy, Universitas Sumatera Utara) ;
  • Yuliasmi, Sri (Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Sumatera Utara)
  • Received : 2020.04.04
  • Accepted : 2020.11.04
  • Published : 2021.10.15

Abstract

We have recently highlighted the immunomodulatory effect of ethanol extract of Curcuma mangga Val. rhizomes. The current study was performed to investigate the teratogenic effects of C. mangga extract in Wistar rats. The C. mangga extract at doses of 100, 500 and 1000 mg/kg bw were administered to pregnant rats on day 6-15 of gestation. The litter size, length and birth weight as well as body weight of pregnant rats were determined to evaluate the teratogenic effects of C. mangga extract. External and skeletal malformations were also examined. The extract reduced the litter length compared to normal control (p<0.05). The average body weight gain of the pregnant rats also decreased. Resorption was observed after treatment with extract at the dose of 1000 mg/kg bw. The extract at the doses of 500 and 1000 mg/kg bw reduced litter birth weight and induced external and skeletal malformations. This demonstrates that ethanol extract of C. mangga has teratogenic effects in Wistar rats and should be used with caution in pregnancy.

Keywords

Acknowledgement

This work was supported by TALENTA grant scheme, Universitas Sumatera Utara with grant number of 4167/UN5.1.R/PPM/2019.

References

  1. Fath B (2008) Encyclopedia of ecology. Elsevier Science, Burlington
  2. McQueen C (2010) Comprehensive toxicology. Elsevier Science, Burlington
  3. Vargesson N (2015) Thalidomide-induced teratogenesis: history and mechanisms. Birth Defects Res C Embryo Today 105:140-156. https://doi.org/10.1002/bdrc.21096
  4. Hyoun SC, Obican SG, Scialli AR (2012) Teratogen update: methotrexate. Birth Defects Res A Clin Mol Teratol 94:187-207. https://doi.org/10.1002/bdra.23003
  5. Cox PA (1994) The ethnobotanical approach to drug discovery: strengths and limitations. Ciba Found Symp 185:25-36. https://doi.org/10.1002/9780470514634
  6. Van der Nat JM, Klerx JPAM, De Silva KTD, Labadie RP (1987) Immunomodulatory activity of an aqueous extract of Azadirachta indica stem bark. J Ethnopharmacol 19:125-213. https://doi.org/10.1016/0378-8741(87)90036-5
  7. Yuandani, Yuliasmi S, Satria DF, Dongoran RS, Sinaga MHA, Marpaung N (2019) Correlation between the phytochemical constituents of Curcuma mangga and its immunomodulatory effect. Rasayan J Chem 12:1-6. https://doi.org/10.31788/RJC.2019.1215050
  8. Karsono AH, Tandrasasmita OM, Tjandrawinata RR (2014) Molecular effects of bioactive fraction of Curcuma mangga (DLBS4847) as a downregulator of 5α-reductase activity pathways in prostatic epithelial cells. Cancer Manag Res 6:267-278. https://doi.org/10.2147/CMAR.S61111
  9. Ruangsang P, Tewtrakul S, Reanmongkol W (2010) Evaluation of the analgesic and anti-inflammatory activities of Curcuma mangga Val and Zijp rhizomes. J Nat Med 64:36. https://doi.org/10.1007/s11418-009-0365-1
  10. Malek SNA, Lee GS, Hong SL, Yaacob H, Wahab NA, Weber JFF (2011) Phytochemical and cytotoxic investigations of Curcuma mangga rhizomes. Molecules 16:4539-4548. https://doi.org/10.3390/molecules16064539
  11. Yuandani, Yuliasmi S (2018) Curcuminoid analysis in Curcuma mangga rhizomes. Asian J Pharm Clin Res 11:129-131. https://doi.org/10.22159/ajpcr.2018.v11s1.26586
  12. Uche-Nwachi EO, McEwen C (2010) Teratogenic effect of the water extract of bitter gourd (Momordica charantia) on the sprague dawley rats. Afr J Tradit Complement Altern Med 7:24-33. https://doi.org/10.4314/ajtcam.v7i1.57228
  13. Tuchman D (1975) Drug effect on the fetus. Adis Press, New York
  14. Hande MP, Veena K (1993) Teratogenic effect of hyperthermia during early organogenesis period in mice. Teratog Carcinog Mutagen 13:145-150. https://doi.org/10.1002/tcm.1770130305
  15. Rugh R (1968) The mouse: its reproduction and development. Burger Publishing Co, New York
  16. Levi MM, Manahan J, Mandl I (1969) Specific resorption of the mouse fetus. Obstet Gynecol 33:11-19. https://doi.org/10.1097/00006250-196901000-00002
  17. Wilson JG, Warkany J (1993) Teratology-principles and techniques. University of Chicago Press, London. https://doi.org/10.1002/jps.2600540944
  18. Olayaki LA, Olatunji-Bello I, Soladoye AO, Jimoh OR, Ghazal O, Ighodalo M (2009) Effects of aqueous leaf extract of Cajanus cajan on litter size and serum progesterone in pregnant rats. J Pharmacognosy Phytother 1:021-024. https://doi.org/10.5897/JPP.9000021
  19. Chahoud I, Paumgartten FJR (2009) Influence of litter size on the postnatal growth of rat pups: is there a rationale for litter-size standardization in toxicity studies? Environ Res 109:1021-1027. https://doi.org/10.1016/j.envres.2009.07.015
  20. Posfai E, Banhidy F, Czeizel AE (2014) Teratogenic effect of hydroxyethylrutoside, a flavonoid derivate drug-a population-based e-control study. J Matern Fetal Neonatal Med 27:1093-1098. https://doi.org/10.3109/14767058.2013.850485
  21. Shu Y, Cao M, Yin ZQ, Li P, Li TQ, Long XF, Zhu LF, Jia RY, Dai SJ, Zhao J (2015) The reproductive toxicity of saponins isolated from Cortex Albiziae in female mice. Chin J Nat Med 13:119-126. https://doi.org/10.1016/S1875-5364(15)60015-2
  22. Wu JY, Lin CY, Lin TW, Ken CF (2007) Curcumin affects development of zebrafish embryo. Biol Pharm Bull 30:1336-13369. https://doi.org/10.1248/bpb.30.1336
  23. Kim D, Kim S, Kang S, Jin E (2009) Curcumin inhibits cellular condensation and alters microfilamen organization during chondogenic differentiation of limb bud mesenchymal cells. Exp Mol Med 41:656-664. https://doi.org/10.3858/emm.2009.41.9.072
  24. Alafiatayo AA, Lai KS, Syahida A, Mahmood M, Shaharuddin NA (2019) Phytochemical evaluation, embryotoxicity, and teratogenic effects of Curcuma longa extract on zebrafish (Danio rerio). Evid Based Complement Altern Med. https://doi.org/10.1155/2019/3807207