DOI QR코드

DOI QR Code

Flavonoids: structure-function and mechanisms of action and opportunities for drug development

  • Safe, Stephen (Department of Veterinary Physiology and Pharmacology, Texas A&M University) ;
  • Jayaraman, Arul (Department of Chemical Engineering, Texas A&M University) ;
  • Chapkin, Robert S. (Department of Nutrition, Texas A&M University) ;
  • Howard, Marcell (Department of Veterinary Physiology and Pharmacology, Texas A&M University) ;
  • Mohankumar, Kumaravel (Department of Veterinary Physiology and Pharmacology, Texas A&M University) ;
  • Shrestha, Rupesh (Department of Biochemistry and Biophysics, Texas A&M University)
  • Received : 2020.11.10
  • Accepted : 2020.12.04
  • Published : 2021.04.15

Abstract

Flavonoids are polyphenolic phytochemicals produced in fruits, nuts and vegetables and dietary consumption of these structurally diverse compounds is associated with multiple health benefits including increased lifespan, decreased cardiovascular problems and low rates of metabolic diseases. Preclinical studies with individual flavonoids demonstrate that these compounds exhibit anti-inflammatory and anticancer activities and they enhance the immune system. Their effectiveness in both chemoprevention and chemotherapy is associated with their targeting of multiple genes/pathways including nuclear receptors, the aryl hydrocarbon receptor (AhR), kinases, receptor tyrosine kinases and G protein-coupled receptors. However, despite the remarkable preclinical activities of flavonoids, their clinical applications have been limited and this is due, in part, to problems in drug delivery and poor bioavailability and these problems are being addressed. Further improvements that will expand clinical applications of flavonoids include mechanism-based precision medicine approaches which will identify critical mechanisms of action of individual flavonoids with optimal activities that can be used in combination therapies.

Keywords

Acknowledgement

The financial assistance of the National Institutes of Health (P30-ES029607 and R01-AT010282), the Syd Kyle Chair endowment and Texas AgriLife are gratefully acknowledged.

References

  1. Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47. https://doi.org/10.1017/jns.2016.41
  2. Niedzwiecki A, Roomi MW, Kalinovsky T, Rath M (2016) Anticancer efficacy of polyphenols and their combinations. Nutrients. https://doi.org/10.3390/nu8090552
  3. Yu J, Bi X, Yu B, Chen D (2016) Isoflavones: anti-inflammatory benefit and possible caveats. Nutrients. https://doi.org/10.3390/nu8060361
  4. Kikuchi H, Yuan B, Hu X, Okazaki M (2019) Chemopreventive and anticancer activity of flavonoids and its possibility for clinical use by combining with conventional chemotherapeutic agents. Am J Cancer Res 9:1517-1535
  5. Krizova L, Dadakova K, Kasparovska J, Kasparovsky T (2019) Isoflavones. Molecules. https://doi.org/10.3390/molecules24061076
  6. Kopustinskiene DM, Jakstas V, Savickas A, Bernatoniene J (2020) Flavonoids as anticancer agents. Nutrients. https://doi.org/10.3390/nu12020457
  7. Alseekh S, Perez de Souza L, Benina M, Fernie AR (2020) The style and substance of plant flavonoid decoration; towards defining both structure and function. Phytochemistry 174:112347. https://doi.org/10.1016/j.phytochem.2020.112347
  8. Pei R, Liu X, Bolling B (2020) Flavonoids and gut health. Curr Opin Biotechnol 61:153-159. https://doi.org/10.1016/j.copbio.2019.12.018
  9. Tohge T, Fernie AR (2010) Combining genetic diversity, informatics and metabolomics to facilitate annotation of plant gene function. Nat Protoc 5:1210-1227. https://doi.org/10.1038/nprot.2010.82
  10. Perez de Souza L, Garbowicz K, Brotman Y, Tohge T, Fernie AR (2020) The acetate pathway supports flavonoid and lipid biosynthesis in arabidopsis. Plant Physiol 182:857-869. https://doi.org/10.1104/pp.19.00683
  11. Hung HC, Joshipura KJ, Jiang R, Hu FB, Hunter D, Smith-Warner SA, Colditz GA, Rosner B, Spiegelman D, Willett WC (2004) Fruit and vegetable intake and risk of major chronic disease. J Natl Cancer Inst 96:1577-1584. https://doi.org/10.1093/jnci/djh296
  12. Murillo G, Mehta RG (2001) Cruciferous vegetables and cancer prevention. Nutr Cancer 41:17-28. https://doi.org/10.1080/01635581.2001.9680607
  13. Key KTJ (2011) Fruit vegetables and cancer risk. Br J Cancer 104:6-11. https://doi.org/10.1038/sj.bjc.6606032
  14. Rodriguez-Garcia C, Sanchez-Quesada C, Gaforio JJ (2019) Dietary flavonoids as cancer chemopreventive agents: an updated review of human studies. Antioxidants (Basel). https://doi.org/10.3390/antiox8050137
  15. Liu Y, Weng W, Gao R, Liu Y (2019) New insights for cellular and molecular mechanisms of aging and aging-related diseases: herbal medicine as potential therapeutic approach. Oxid Med Cell Longev 2019:4598167. https://doi.org/10.1155/2019/4598167
  16. Bondonno NP, Dalgaard F, Kyro C, Murray K, Bondonno CP, Lewis JR, Croft KD, Gislason G, Scalbert A, Cassidy A et al (2019) Flavonoid intake is associated with lower mortality in the danish diet cancer and health cohort. Nat Commun 10:3651. https://doi.org/10.1038/s41467-019-11622-x
  17. Kim Y (2017) Je Y Flavonoid intake and mortality from cardiovascular disease and all causes: a meta-analysis of prospective cohort studies. Clin Nutr ESPEN 20:68-77. https://doi.org/10.1016/j.clnesp.2017.03.004
  18. Pounis G, Costanzo S, Bonaccio M, Di Castelnuovo A, de Curtis A, Ruggiero E, Persichillo M, Cerletti C, Donati MB, de Gaetano G et al (2018) Reduced mortality risk by a polyphenol-rich diet: an analysis from the Moli-sani study. Nutrition 48:87-95. https://doi.org/10.1016/j.nut.2017.11.012
  19. Medina-Remon A, Casas R, Tressserra-Rimbau A, Ros E, Martinez-Gonzalez MA, Fito M, Corella D, Salas-Salvado J, Lamuela-Raventos RM, Estruch R et al (2017) Polyphenol intake from a Mediterranean diet decreases inflammatory biomarkers related to atherosclerosis: a substudy of the PREDIMED trial. Br J Clin Pharmacol 83:114-128. https://doi.org/10.1111/bcp.12986
  20. Ivey KL, Hodgson JM, Croft KD, Lewis JR, Prince RL (2015) Flavonoid intake and all-cause mortality. Am J Clin Nutr 101:1012-1020. https://doi.org/10.3945/ajcn.113.073106
  21. Liu XM, Liu YJ, Huang Y, Yu HJ, Yuan S, Tang BW, Wang PG, He QQ (2017) Dietary total flavonoids intake and risk of mortality from all causes and cardiovascular disease in the general population: a systematic review and meta-analysis of cohort studies. Mol Nutr Food Res. https://doi.org/10.1002/mnfr.201601003
  22. Ivey KL, Jensen MK, Hodgson JM, Eliassen AH, Cassidy A, Rimm EB (2017) Association of flavonoid-rich foods and flavonoids with risk of all-cause mortality. Br J Nutr 117:1470-1477. https://doi.org/10.1017/S0007114517001325
  23. Rienks J, Barbaresko J, Oluwagbemigun K, Schmid M, Nothlings U (2018) Polyphenol exposure and risk of type 2 diabetes: dose-response meta-analyses and systematic review of prospective cohort studies. Am J Clin Nutr 108:49-61. https://doi.org/10.1093/ajcn/nqy083
  24. Gao Q, Zhong C, Zhou X, Chen R, Xiong T, Hong M, Li Q, Kong M, Xiong G, Han W et al (2020) Inverse association of total polyphenols and flavonoids intake and the intake from fruits with the risk of gestational diabetes mellitus: a prospective cohort study. Clin Nutr. https://doi.org/10.1016/j.clnu.2020.05.053
  25. Caro-Ordieres T, Marin-Royo G, Opazo-Rios L, Jimenez-Castilla L, Moreno JA, Gomez-Guerrero C, Egido J (2020) The coming age of flavonoids in the treatment of diabetic complications. J Clin Med. https://doi.org/10.3390/jcm9020346
  26. Cao H, Ou J, Chen L, Zhang Y, Szkudelski T, Delmas D, Daglia M, Xiao J (2019) Dietary polyphenols and type 2 diabetes: Human Study and Clinical Trial. Crit Rev Food Sci Nutr 59:3371-3379. https://doi.org/10.1080/10408398.2018.1492900
  27. Akhlaghi M, Ghobadi S, Mohammad Hosseini M, Gholami Z, Mohammadian F (2018) Flavanols are potential anti-obesity agents, a systematic review and meta-analysis of controlled clinical trials. Nutr Metab Cardiovasc Dis 28:675-690. https://doi.org/10.1016/j.numecd.2018.04.001
  28. Tresserra-Rimbau A, Castro-Barquero S, Vitelli-Storelli F, Becerra-Tomas N, Vazquez-Ruiz Z, Diaz-Lopez A, Corella D, Castaner O, Romaguera D, Vioque J et al (2019) Associations between dietary polyphenols and type 2 diabetes in a cross-sectional analysis of the predimed-plus trial: role of body mass index and sex. Antioxidants (Basel). https://doi.org/10.3390/antiox8110537
  29. Field DT, Williams CM, Butler LT (2011) Consumption of cocoa flavanols results in an acute improvement in visual and cognitive functions. Physiol Behav 103:255-260. https://doi.org/10.1016/j.physbeh.2011.02.013
  30. Whyte AR, Williams CM (2015) Effects of a single dose of a flavonoid-rich blueberry drink on memory in 8 to 10 y old children. Nutrition 31:531-534. https://doi.org/10.1016/j.nut.2014.09.013
  31. Alharbi MH, Lamport DJ, Dodd GF, Saunders C, Harkness L, Butler LT, Spencer JP (2016) Flavonoid-rich orange juice is associated with acute improvements in cognitive function in healthy middle-aged males. Eur J Nutr 55:2021-2029. https://doi.org/10.1007/s00394-015-1016-9
  32. Lamport DJ, Pal D, Macready AL, Barbosa-Boucas S, Fletcher JM, Williams CM, Spencer JP, Butler LT (2016) The effects of flavanone-rich citrus juice on cognitive function and cerebral blood flow: an acute, randomised, placebo-controlled cross-over trial in healthy, young adults. Br J Nutr 116:2160-2168. https://doi.org/10.1017/S000711451600430X
  33. Scholey AB, French SJ, Morris PJ, Kennedy DO, Milne AL, Haskell CF (2010) Consumption of cocoa flavanols results in acute improvements in mood and cognitive performance during sustained mental effort. J Psychopharmacol 24:1505-1514. https://doi.org/10.1177/0269881109106923
  34. Valls-Pedret C, Lamuela-Raventos RM, Medina-Remon A, Quintana M, Corella D, Pinto X, Martinez-Gonzalez MA, Estruch R, Ros E (2012) Polyphenol-rich foods in the Mediterranean diet are associated with better cognitive function in elderly subjects at high cardiovascular risk. J Alzheimers Dis 29:773-782. https://doi.org/10.3233/JAD-2012-111799
  35. Safouris A, Tsivgoulis G, Sergentanis TN, Psaltopoulou T (2015) Mediterranean diet and risk of dementia. Curr Alzheimer Res 12:736-744. https://doi.org/10.2174/1567205012666150710114430
  36. Anastasiou CA, Yannakoulia M, Kosmidis MH, Dardiotis E, Hadjigeorgiou GM, Sakka P, Arampatzi X, Bougea A, Labropoulos I, Scarmeas N (2017) Mediterranean diet and cognitive health: Initial results from the hellenic longitudinal investigation of ageing and diet. PLoS ONE 12:e0182048. https://doi.org/10.1371/journal.pone.0182048
  37. Berti V, Walters M, Sterling J, Quinn CG, Logue M, Andrews R, Matthews DC, Osorio RS, Pupi A, Vallabhajosula S et al (2018) Mediterranean diet and 3-year Alzheimer brain biomarker changes in middle-aged adults. Neurology 90:e1789-e1798. https://doi.org/10.1212/WNL.0000000000005527
  38. Agarwal AN, Mais DD (2019) Sensitivity and specificity of alzheimer type II astrocytes in hepatic encephalopathy. Arch Pathol Lab Med 143:1256-1258. https://doi.org/10.5858/arpa.2018-0455-OA
  39. Shishtar E, Rogers GT, Blumberg JB, Au R, Jacques PF (2020) Long-term dietary flavonoid intake and risk of Alzheimer disease and related dementias in the Framingham Offspring Cohort. Am J Clin Nutr 112:343-353. https://doi.org/10.1093/ajcn/nqaa079
  40. Shishtar E, Rogers GT, Blumberg JB, Au R, DeCarli C, Jacques PF (2020) Flavonoid intake and MRI markers of brain health in the framingham offspring cohort. J Nutr 150:1545-1553. https://doi.org/10.1093/jn/nxaa068
  41. Ferraz CR, Carvalho TT, Manchope MF, Artero NA, Rasquel-Oliveira FS, Fattori V, Casagrande R, Verri WA Jr (2020) Therapeutic potential of flavonoids in pain and inflammation: mechanisms of action, pre-clinical and clinical data, and pharmaceutical development. Molecules. https://doi.org/10.3390/molecules25030762
  42. Farzaei MH, Singh AK, Kumar R, Croley CR, Pandey AK, Coy-Barrera E, Kumar Patra J, Das G, Kerry RG, Annunziata G et al (2019) Targeting inflammation by flavonoids: novel therapeutic strategy for metabolic disorders. Int J Mol Sci. https://doi.org/10.3390/ijms20194957
  43. Maleki SJ, Crespo JF, Cabanillas B (2019) Anti-inflammatory effects of flavonoids. Food Chem 299:125124. https://doi.org/10.1016/j.foodchem.2019.125124
  44. Godeberge P (1994) Daflon 500 mg in the treatment of hemorrhoidal disease: a demonstrated efficacy in comparison with placebo. Angiology 45:574-578 https://doi.org/10.1177/000331979404500613
  45. Rizza S, Muniyappa R, Iantorno M, Kim JA, Chen H, Pullikotil P, Senese N, Tesauro M, Lauro D, Cardillo C et al (2011) Citrus polyphenol hesperidin stimulates production of nitric oxide in endothelial cells while improving endothelial function and reducing inflammatory markers in patients with metabolic syndrome. J Clin Endocrinol Metab 96:E782-E792. https://doi.org/10.1210/jc.2010-2879
  46. Cospite M (1994) Double-blind, placebo-controlled evaluation of clinical activity and safety of Daflon 500 mg in the treatment of acute hemorrhoids. Angiology 45:566-573
  47. Bogdanski P, Suliburska J, Szulinska M, Stepien M, Pupek-Musialik D, Jablecka A (2012) Green tea extract reduces blood pressure, inflammatory biomarkers, and oxidative stress and improves parameters associated with insulin resistance in obese, hypertensive patients. Nutr Res 32:421-427. https://doi.org/10.1016/j.nutres.2012.05.007
  48. Martinez G, Mijares MR, De Sanctis JB (2019) Effects of flavonoids and its derivatives on immune cell responses. Recent Pat Inflamm Allergy Drug Discov 13:84-104. https://doi.org/10.2174/1872213X13666190426164124
  49. Sharma S, Naura AS (2020) Potential of phytochemicals as immune-regulatory compounds in atopic diseases: a review. Biochem Pharmacol 173:113790. https://doi.org/10.1016/j.bcp.2019.113790
  50. Margina D, Ungurianu A, Purdel C, Nitulescu GM, Tsoukalas D, Sarandi E, Thanasoula M, Burykina TI, Tekos F, Buha A et al (2020) Analysis of the intricate effects of polyunsaturated fatty acids and polyphenols on inflammatory pathways in health and disease. Food Chem Toxicol 143:111558. https://doi.org/10.1016/j.fct.2020.111558
  51. Focaccetti C, Izzi V, Benvenuto M, Fazi S, Ciuffa S, Giganti MG, Potenza V, Manzari V, Modesti A, Bei R (2019) Polyphenols as immunomodulatory compounds in the tumor microenvironment: friends or foes? Int J Mol Sci. https://doi.org/10.3390/ijms20071714
  52. Vezza T, Rodriguez-Nogales A, Algieri F, Utrilla MP, Rodriguez-Cabezas ME, Galvez J (2016) Flavonoids in inflammatory bowel disease: a review. Nutrients 8:211. https://doi.org/10.3390/nu8040211
  53. Oteiza PI, Fraga CG, Mills DA, Taft DH (2018) Flavonoids and the gastrointestinal tract: local and systemic effects. Mol Aspects Med 61:41-49. https://doi.org/10.1016/j.mam.2018.01.001
  54. Salaritabar A, Darvishi B, Hadjiakhoondi F, Manayi A, Sureda A, Nabavi SF, Fitzpatrick LR, Nabavi SM, Bishayee A (2017) Therapeutic potential of flavonoids in inflammatory bowel disease: a comprehensive review. World J Gastroenterol 23:5097-5114. https://doi.org/10.3748/wjg.v23.i28.5097
  55. Musumeci L, Maugeri A, Cirmi S, Lombardo GE, Russo C, Gangemi S, Calapai G, Navarra M (2020) Citrus fruits and their flavonoids in inflammatory bowel disease: an overview. Nat Prod Res. 34:122-136. https://doi.org/10.1080/14786419.2019.1601196
  56. Algieri F, Rodriguez-Nogales A, Rodriguez-Cabezas ME, Risco S, Ocete MA, Galvez J (2015) Botanical drugs as an emerging strategy in inflammatory bowel disease: a review. Mediators Inflamm 2015:179616. https://doi.org/10.1155/2015/179616
  57. Chen S, Zhao H, Cheng N, Cao W (2019) Rape bee pollen alleviates dextran sulfate sodium (DSS)-induced colitis by neutralizing IL-1beta and regulating the gut microbiota in mice. Food Res Int 122:241-251. https://doi.org/10.1016/j.foodres.2019.04.022
  58. Chicco F, Magri S, Cingolani A, Paduano D, Pesenti M, Zara F, Tumbarello F, Urru E, Melis A, Casula L et al (2020) Multidimensional impact of mediterranean diet on IBD patients. Inflamm Bowel Dis. https://doi.org/10.1093/ibd/izaa097
  59. Skolmowska D, Glabska D, Guzek D, Lech G (2019) Association between dietary isoflavone intake and ulcerative colitis symptoms in polish caucasian individuals. Nutrients. https://doi.org/10.3390/nu11081936
  60. Biedermann L, Mwinyi J, Scharl M, Frei P, Zeitz J, Kullak-Ublick GA, Vavricka SR, Fried M, Weber A, Humpf HU et al (2013) Bilberry ingestion improves disease activity in mild to moderate ulcerative colitis-an open pilot study. J Crohns Colitis 7:271-279. https://doi.org/10.1016/j.crohns.2012.07.010
  61. Dryden GW, Lam A, Beatty K, Qazzaz HH, McClain CJ (2013) A pilot study to evaluate the safety and efficacy of an oral dose of (-)-epigallocatechin-3-gallate-rich polyphenon E in patients with mild to moderate ulcerative colitis. Inflamm Bowel Dis 19:1904-1912. https://doi.org/10.1097/MIB.0b013e31828f5198
  62. Kolacek M, Muchova J, Dvorakova M, Paduchova Z, Zitnanova I, Cierna I, Orszaghova Z, Szekyova D, Jajcaiova-Zednickova N, Kovacs L et al (2013) Effect of natural polyphenols (Pycnogenol) on oxidative stress markers in children suffering from Crohn's disease-a pilot study. Free Radic Res 47:624-634. https://doi.org/10.3109/10715762.2013.807508
  63. Kim H, Venancio VP, Fang C, Dupont AW, Talcott ST, Mertens-Talcott SU (2020) Mango (Mangifera indica L.) polyphenols reduce IL-8, GRO, and GM-SCF plasma levels and increase Lactobacillus species in a pilot study in patients with inflammatory bowel disease. Nutr Res. 75:85-94. https://doi.org/10.1016/j.nutres.2020.01.002
  64. Park S, Song G, Lim W (2020) Myricetin inhibits endometriosis growth through cyclin E1 down-regulation in vitro and in vivo. J Nutr Biochem 78:108328. https://doi.org/10.1016/j.jnutbio.2019.108328
  65. Park S, Lim W, Bazer FW, Whang KY, Song G (2019) Quercetin inhibits proliferation of endometriosis regulating cyclin D1 and its target microRNAs in vitro and in vivo. J Nutr Biochem 63:87-100. https://doi.org/10.1016/j.jnutbio.2018.09.024
  66. Park S, Lim W, You S, Song G (2019) Ameliorative effects of luteolin against endometriosis progression in vitro and in vivo. J Nutr Biochem 67:161-172. https://doi.org/10.1016/j.jnutbio.2019.02.006
  67. Wang CC, Xu H, Man GC, Zhang T, Chu KO, Chu CY, Cheng JT, Li G, He YX, Qin L et al (2013) Prodrug of green tea epigallocatechin-3-gallate (Pro-EGCG) as a potent anti-angiogenesis agent for endometriosis in mice. Angiogenesis 16:59-69. https://doi.org/10.1007/s10456-012-9299-4
  68. Yu MM, Zhou QM (2018) 3,6-dihydroxyflavone suppresses the epithelial-mesenchymal transition, migration and invasion in endometrial stromal cells by inhibiting the Notch signaling pathway. Eur Rev Med Pharmacol Sci 22:4009-4017. https://doi.org/10.26355/eurrev_201806_15287
  69. Ilhan M, Ali Z, Khan IA, Tastan H, Kupeli Akkol E (2020) The regression of endometriosis with glycosylated flavonoids isolated from Melilotus officinalis (L.) Pall. in an endometriosis rat model. Taiwan J Obstet Gynecol 59:211-219. https://doi.org/10.1016/j.tjog.2020.01.008
  70. Ding D, Cai X, Zheng H, Guo SW, Liu X (2019) Scutellarin suppresses platelet aggregation and stalls lesional progression in mouse with induced endometriosis. Reprod Sci 26:1417-1428. https://doi.org/10.1177/1933719118817661
  71. Ilhan M, Ali Z, Khan IA, Tastan H, Kupeli Akkol E (2019) Bioactivity-guided isolation of flavonoids from Urtica dioica L. and their effect on endometriosis rat model. J Ethnopharmacol 243:112100. https://doi.org/10.1016/j.jep.2019.112100
  72. Ryu S, Bazer FW, Lim W, Song G (2019) Chrysin leads to cell death in endometriosis by regulation of endoplasmic reticulum stress and cytosolic calcium level. J Cell Physiol 234:2480-2490. https://doi.org/10.1002/jcp.26770
  73. Toh MF, Mendonca E, Eddie SL, Endsley MP, Lantvit DD, Petukhov PA, Burdette JE (2014) Kaempferol exhibits progestogenic effects in ovariectomized rats. J Steroids Horm Sci 5:136. https://doi.org/10.4172/2157-7536.1000136
  74. Matsuzaki S, Darcha C (2014) Antifibrotic properties of epigallocatechin-3-gallate in endometriosis. Hum Reprod 29:1677-1687. https://doi.org/10.1093/humrep/deu123
  75. Signorile PG, Viceconte R, Baldi A (2018) Novel dietary supplement association reduces symptoms in endometriosis patients. J Cell Physiol 233:5920-5925. https://doi.org/10.1002/jcp.26401
  76. Del Bo C, Bernardi S, Marino M, Porrini M, Tucci M, Guglielmetti S, Cherubini A, Carrieri B, Kirkup B, Kroon P et al (2019) Systematic review on polyphenol intake and health outcomes: is there sufficient evidence to define a health-promoting polyphenol-rich dietary pattern? Nutrients. https://doi.org/10.3390/nu11061355
  77. Abbaszadeh H, Keikhaei B, Mottaghi S (2019) A review of molecular mechanisms involved in anticancer and antiangiogenic effects of natural polyphenolic compounds. Phytother Res 33:2002-2014. https://doi.org/10.1002/ptr.6403
  78. Khater M, Greco F, Osborn HMI (2020) Antiangiogenic activity of flavonoids: a systematic review and meta-analysis. Molecules. https://doi.org/10.3390/molecules25204712
  79. Abotaleb M, Samuel SM, Varghese E, Varghese S, Kubatka P, Liskova A, Busselberg D (2018) Flavonoids in cancer and apoptosis. Cancers (Basel). https://doi.org/10.3390/cancers11010028
  80. Bisol A, de Campos PS, Lamers ML (2020) Flavonoids as anticancer therapies: a systematic review of clinical trials. Phytother Res 34:568-582. https://doi.org/10.1002/ptr.6551
  81. Nimptsch K, Zhang X, Cassidy A, Song M, O'Reilly EJ, Lin JH, Pischon T, Rimm EB, Willett WC, Fuchs CS et al (2016) Habitual intake of flavonoid subclasses and risk of colorectal cancer in 2 large prospective cohorts. Am J Clin Nutr 103:184-191. https://doi.org/10.3945/ajcn.115.117507
  82. Xu M, Chen YM, Huang J, Fang YJ, Huang WQ, Yan B, Lu MS, Pan ZZ, Zhang CX (2016) Flavonoid intake from vegetables and fruits is inversely associated with colorectal cancer risk: a case-control study in China. Br J Nutr 116:1275-1287. https://doi.org/10.1017/S0007114516003196
  83. Zamora-Ros R, Not C, Guino E, Lujan-Barroso L, Garcia RM, Biondo S, Salazar R, Moreno V (2013) Association between habitual dietary flavonoid and lignan intake and colorectal cancer in a Spanish case-control study (the Bellvitge Colorectal Cancer Study). Cancer Causes Control 24:549-557. https://doi.org/10.1007/s10552-012-9992-z
  84. Zamora-Ros R, Guino E, Alonso MH, Vidal C, Barenys M, Soriano A, Moreno V (2015) Dietary flavonoids, lignans and colorectal cancer prognosis. Sci Rep 5:14148. https://doi.org/10.1038/srep14148
  85. Vaishampayan U, Hussain M, Banerjee M, Seren S, Sarkar FH, Fontana J, Forman JD, Cher ML, Powell I, Pontes JE et al (2007) Lycopene and soy isoflavones in the treatment of prostate cancer. Nutr Cancer 59:1-7. https://doi.org/10.1080/01635580701413934
  86. El-Rayes BF, Philip PA, Sarkar FH, Shields AF, Ferris AM, Hess K, Kaseb AO, Javle MM, Varadhachary GR, Wolff RA et al (2011) A phase II study of isoflavones, erlotinib, and gemcitabine in advanced pancreatic cancer. Invest New Drugs 29:694-699. https://doi.org/10.1007/s10637-010-9386-6
  87. Zhao J, Yang J, Xie Y (2019) Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: an overview. Int J Pharm 570:118642. https://doi.org/10.1016/j.ijpharm.2019.118642
  88. Castelli V, Grassi D, Bocale R, d'Angelo M, Antonosante A, Cimini A, Ferri C, Desideri G (2018) Diet and brain health: which role for polyphenols? Curr Pharm Des 24:227-238. https://doi.org/10.2174/1381612824666171213100449
  89. Zhao L, Yuan X, Wang J, Feng Y, Ji F, Li Z, Bian J (2019) A review on flavones targeting serine/threonine protein kinases for potential anticancer drugs. Bioorg Med Chem 27:677-685. https://doi.org/10.1016/j.bmc.2019.01.027
  90. Dong X, Zhou X, Jing H, Chen J, Liu T, Yang B, He Q, Hu Y (2011) Pharmacophore identification, virtual screening and biological evaluation of prenylated flavonoids derivatives as PKB/Akt1 inhibitors. Eur J Med Chem 46:5949-5958. https://doi.org/10.1016/j.ejmech.2011.10.006
  91. Hou DX, Kumamoto T (2010) Flavonoids as protein kinase inhibitors for cancer chemoprevention: direct binding and molecular modeling. Antioxid Redox Signal 13:691-719. https://doi.org/10.1089/ars.2009.2816
  92. Teillet F, Boumendjel A, Boutonnat J, Ronot X (2008) Flavonoids as RTK inhibitors and potential anticancer agents. Med Res Rev 28:715-745. https://doi.org/10.1002/med.20122
  93. Goettert M, Schattel V, Koch P, Merfort I, Laufer S (2010) Biological evaluation and structural determinants of p38alpha mitogen-activated-protein kinase and c-Jun-N-terminal kinase 3 inhibition by flavonoids. Chem Bio Chem 11:2579-2588. https://doi.org/10.1002/cbic.201000487
  94. Chae HS, Xu R, Won JY, Chin YW, Yim H (2019) Molecular targets of genistein and its related flavonoids to exert anticancer effects. Int J Mol Sci. https://doi.org/10.3390/ijms20102420
  95. Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fukami Y (1987) Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 262:5592-5595 https://doi.org/10.1016/S0021-9258(18)45614-1
  96. Lolli G, Cozza G, Mazzorana M, Tibaldi E, Cesaro L, Donella-Deana A, Meggio F, Venerando A, Franchin C, Sarno S et al (2012) Inhibition of protein kinase CK2 by flavonoids and tyrphostins. A structural insight. Biochemistry 51:6097-6107. https://doi.org/10.1021/bi300531c
  97. Larsen CA, Dashwood RH, Bisson WH (2010) Tea catechins as inhibitors of receptor tyrosine kinases: mechanistic insights and human relevance. Pharmacol Res 62:457-464. https://doi.org/10.1016/j.phrs.2010.07.010
  98. Singh P, Bast F (2015) Screening of multi-targeted natural compounds for receptor tyrosine kinases inhibitors and biological evaluation on cancer cell lines, in silico and in vitro. Med Oncol 32:233. https://doi.org/10.1007/s12032-015-0678-8
  99. Way TD, Kao MC, Lin JK (2004) Apigenin induces apoptosis through proteasomal degradation of HER2/neu in HER2/neu-overexpressing breast cancer cells via the phosphatidylinositol 3-kinase/Akt-dependent pathway. J Biol Chem 279:4479-4489. https://doi.org/10.1074/jbc.M305529200
  100. Elsayed HE, Ebrahim HY, Mohyeldin MM, Siddique AB, Kamal AM, Haggag EG, El Sayed KA (2017) Rutin as a novel c-met inhibitory lead for the control of triple negative breast malignancies. Nutr Cancer 69:1256-1271. https://doi.org/10.1080/01635581.2017.1367936
  101. Chandrika BB, Steephan M, Kumar TRS, Sabu A, Haridas M (2016) Hesperetin and naringenin sensitize HER2 positive cancer cells to death by serving as HER2 tyrosine kinase inhibitors. Life Sci 160:47-56. https://doi.org/10.1016/j.lfs.2016.07.007
  102. Fang J, Zhou Q, Shi XL, Jiang BH (2007) Luteolin inhibits insulin-like growth factor 1 receptor signaling in prostate cancer cells. Carcinogenesis 28:713-723. https://doi.org/10.1093/carcin/bgl189
  103. Hu W, Wu X, Tang J, Zhao G, Xiao N, Zhang L, Li S (2019) Anti-cancer targets of formononetin and molecular mechanisms in osteosarcoma: findings of bioinformatic and experimental assays. J Cell Mol Med 23:3505-3511. https://doi.org/10.1111/jcmm.14248
  104. Singh P, Bast F (2015) Screening and biological evaluation of myricetin as a multiple target inhibitor insulin, epidermal growth factor, and androgen receptor; in silico and in vitro. Invest New Drugs 33:575-593. https://doi.org/10.1007/s10637-015-0240-8
  105. Hariri BM, McMahon DB, Chen B, Freund JR, Mansfield CJ, Doghramji LJ, Adappa ND, Palmer JN, Kennedy DW, Reed DR et al (2017) Flavones modulate respiratory epithelial innate immunity: anti-inflammatory effects and activation of the T2R14 receptor. J Biol Chem 292:8484-8497. https://doi.org/10.1074/jbc.M116.771949
  106. Sheng Y, Li W, Zhu F, Liu K, Chen H, Yao K, Reddy K, Lim DY, Oi N, Li H et al (2014) 3,6,2',4',5'-Pentahydroxyflavone, an orally bioavailable multiple protein kinase inhibitor, overcomes gefitinib resistance in non-small cell lung cancer. J Biol Chem 289:28192-28201. https://doi.org/10.1074/jbc.M114.593475
  107. Yang H, Wang M, Sun H, Zhu S, Jin J (2019) Synergetic effect of EP1 receptor antagonist and (-)-epigallocatechin-3-gallate in hepatocellular carcinoma. Pharmacology 104:267-275. https://doi.org/10.1159/000502076
  108. Xiao WZ, Zhou WH, Ma Q, Cui WG, Mei QY, Zhao X (2019) Serotonergically dependent antidepressant-like activity on behavior and stress axis responsivity of acacetin. Pharmacol Res 146:104310. https://doi.org/10.1016/j.phrs.2019.104310
  109. Li S, Pei Y, Wang W, Liu F, Zheng K, Zhang X (2019) Quercetin suppresses the proliferation and metastasis of metastatic osteosarcoma cells by inhibiting parathyroid hormone receptor 1. Biomed Pharmacother 114:108839. https://doi.org/10.1016/j.biopha.2019.108839
  110. Navarro-Nunez L, Castillo J, Lozano ML, Martinez C, Benavente-Garcia O, Vicente V, Rivera J (2009) Thromboxane A2 receptor antagonism by flavonoids: structure-activity relationships. J Agric Food Chem 57:1589-1594. https://doi.org/10.1021/jf803041k
  111. Xu H, Lu H, Zhu X, Wang W, Zhang Z, Fu H, Ma S, Luo Y, Fu J (2018) Inhibitory effects of luteolin4'ObetaDglucopyranoside on P2Y12 and thromboxane A2 receptormediated amplification of platelet activation in vitro. Int J Mol Med 42:615-624. https://doi.org/10.3892/ijmm.2018.3634
  112. Korte G, Dreiseitel A, Schreier P, Oehme A, Locher S, Hajak G, Sand PG (2009) An examination of anthocyanins' and anthocyanidins' affinity for cannabinoid receptors. J Med Food 12:1407-1410. https://doi.org/10.1089/jmf.2008.0243
  113. Korte G, Dreiseitel A, Schreier P, Oehme A, Locher S, Geiger S, Heilmann J, Sand PG (2010) Tea catechins' affinity for human cannabinoid receptors. Phytomedicine 17:19-22. https://doi.org/10.1016/j.phymed.2009.10.001
  114. Refolo MG, D'Alessandro R, Malerba N, Laezza C, Bifulco M, Messa C, Caruso MG, Notarnicola M, Tutino V (2015) Anti proliferative and pro apoptotic effects of flavonoid quercetin are mediated by cb1 receptor in human colon cancer cell lines. J Cell Physiol 230:2973-2980. https://doi.org/10.1002/jcp.25026
  115. Wootten D, Simms J, Koole C, Woodman OL, Summers RJ, Christopoulos A, Sexton PM (2011) Modulation of the glucagon-like peptide-1 receptor signaling by naturally occurring and synthetic flavonoids. J Pharmacol Exp Ther 336:540-550. https://doi.org/10.1124/jpet.110.176362
  116. Tarawneh A, Leon F, Pettaway S, Elokely KM, Klein ML, Lambert J, Mansoor A, Cutler SJ (2015) Flavonoids from perovskia atriplicifolia and their in vitro displacement of the respective radioligands for human opioid and cannabinoid receptors. J Nat Prod 78:1461-1465. https://doi.org/10.1021/acs.jnatprod.5b00218
  117. Ruiu S, Anzani N, Orru A, Floris C, Caboni P, Alcaro S, Maccioni E, Distinto S, Cottiglia F (2015) Methoxyflavones from Stachys glutinosa with binding affinity to opioid receptors: in silico, in vitro, and in vivo studies. J Nat Prod 78:69-76. https://doi.org/10.1021/np500671v
  118. Panneerselvam M, Tsutsumi YM, Bonds JA, Horikawa YT, Saldana M, Dalton ND, Head BP, Patel PM, Roth DM, Patel HH (2010) Dark chocolate receptors: epicatechin-induced cardiac protection is dependent on delta-opioid receptor stimulation. Am J Physiol Heart Circ Physiol 299:H1604-H1609. https://doi.org/10.1152/ajpheart.00073.2010
  119. Swaminathan M, Chee CF, Chin SP, Buckle MJ, Rahman NA, Doughty SW, Chung LY (2014) Flavonoids with M1 muscarinic acetylcholine receptor binding activity. Molecules 19:8933-8948. https://doi.org/10.3390/molecules19078933
  120. Ortega JT, Parmar T, Jastrzebska B (2019) Flavonoids enhance rod opsin stability, folding, and self-association by directly binding to ligand-free opsin and modulating its conformation. J Biol Chem 294:8101-8122. https://doi.org/10.1074/jbc.RA119.007808
  121. Feng R, Ding F, Mi XH, Liu SF, Jiang AL, Liu BH, Lian Y, Shi Q, Wang YJ, Zhang Y (2019) Protective effects of ligustroflavone, an active compound from ligustrum lucidum, on diabetes-induced osteoporosis in mice: a potential candidate as calcium-sensing receptor antagonist. Am J Chin Med 47:457-476. https://doi.org/10.1142/S0192415X1950023X
  122. Xia R, Xu G, Huang Y, Sheng X, Xu X, Lu H (2018) Hesperidin suppresses the migration and invasion of non-small cell lung cancer cells by inhibiting the SDF-1/CXCR-4 pathway. Life Sci 201:111-120. https://doi.org/10.1016/j.lfs.2018.03.046
  123. Hidalgo J, Teuber S, Morera FJ, Ojeda C, Flores CA, Hidalgo MA, Nunez L, Villalobos C, Burgos RA (2017) Delphinidin reduces glucose uptake in mice jejunal tissue and human intestinal cells lines through FFA1/GPR40. Int J Mol Sci. https://doi.org/10.3390/ijms18040750
  124. Chung LY, Yap KF, Goh SH, Mustafa MR, Imiyabir Z (2008) Muscarinic receptor binding activity of polyoxygenated flavones from Melicope subunifoliolata. Phytochemistry 69:1548-1554. https://doi.org/10.1016/j.phytochem.2008.01.024
  125. Roland WS, Gouka RJ, Gruppen H, Driesse M, van Buren L, Smit G, Vincken JP (2014) 6-methoxyflavanones as bitter taste receptor blockers for hTAS2R39. PLoS ONE 9:e94451. https://doi.org/10.1371/journal.pone.0094451
  126. Roland WS, van Buren L, Gruppen H, Driesse M, Gouka RJ, Smit G, Vincken JP (2013) Bitter taste receptor activation by flavonoids and isoflavonoids: modeled structural requirements for activation of hTAS2R14 and hTAS2R39. J Agric Food Chem 61:10454-10466. https://doi.org/10.1021/jf403387p
  127. Roland WS, Vincken JP, Gouka RJ, van Buren L, Gruppen H, Smit G (2011) Soy isoflavones and other isoflavonoids activate the human bitter taste receptors hTAS2R14 and hTAS2R39. J Agric Food Chem 59:11764-11771. https://doi.org/10.1021/jf202816u
  128. Kuroda Y, Ikeda R, Yamazaki T, Ito K, Uda K, Wakabayashi K, Watanabe T (2016) Activation of human bitter taste receptors by polymethoxylated flavonoids. Biosci Biotechnol Biochem 80:2014-2017. https://doi.org/10.1080/09168451.2016.1184558
  129. Batenburg AM, de Joode T, Gouka RJ (2016) Characterization and modulation of the bitterness of polymethoxyflavones using sensory and receptor-based methods. J Agric Food Chem 64:2619-2626. https://doi.org/10.1021/acs.jafc.5b05833
  130. Shang D, Li Z, Zhu Z, Chen H, Zhao L, Wang X, Chen Y (2015) Baicalein suppresses 17-beta-estradiol-induced migration, adhesion and invasion of breast cancer cells via the G protein-coupled receptor 30 signaling pathway. Oncol Rep 33:2077-2085. https://doi.org/10.3892/or.2015.3786
  131. Luo LJ, Liu F, Lin ZK, Xie YF, Xu JL, Tong QC, Shu R (2012) Genistein regulates the IL-1 beta induced activation of MAPKs in human periodontal ligament cells through G protein-coupled receptor 30. Arch Biochem Biophys 522:9-16. https://doi.org/10.1016/j.abb.2012.04.007
  132. Kajta M, Rzemieniec J, Litwa E, Lason W, Lenartowicz M, Krzeptowski W, Wojtowicz AK (2013) The key involvement of estrogen receptor beta and G-protein-coupled receptor 30 in the neuroprotective action of daidzein. Neuroscience 238:345-360. https://doi.org/10.1016/j.neuroscience.2013.02.005
  133. Moreno-Ulloa A, Mendez-Luna D, Beltran-Partida E, Castillo C, Guevara G, Ramirez-Sanchez I, Correa-Basurto J, Ceballos G, Villarreal F (2015) The effects of (-)-epicatechin on endothelial cells involve the G protein-coupled estrogen receptor (GPER). Pharmacol Res 100:309-320. https://doi.org/10.1016/j.phrs.2015.08.014
  134. Khan K, Pal S, Yadav M, Maurya R, Trivedi AK, Sanyal S, Chattopadhyay N (2015) Prunetin signals via G-protein-coupled receptor, GPR30(GPER1): Stimulation of adenylyl cyclase and cAMP-mediated activation of MAPK signaling induces Runx2 expression in osteoblasts to promote bone regeneration. J Nutr Biochem 26:1491-1501. https://doi.org/10.1016/j.jnutbio.2015.07.021
  135. Qiao C, Ye W, Li S, Wang H, Ding X (2018) Icariin modulates mitochondrial function and apoptosis in high glucose-induced glomerular podocytes through G protein-coupled estrogen receptors. Mol Cell Endocrinol 473:146-155. https://doi.org/10.1016/j.mce.2018.01.014
  136. Chen Y, Wang J, Hong DY, Chen L, Zhang YY, Xu YN, Pan D, Fu LY, Tao L, Luo H et al (2017) Baicalein has protective effects on the 17beta-estradiol-induced transformation of breast epithelial cells. Oncotarget 8:10470-10484. https://doi.org/10.18632/oncotarget.14433
  137. Du ZR, Feng XQ, Li N, Qu JX, Feng L, Chen L, Chen WF (2018) G protein-coupled estrogen receptor is involved in the anti-inflammatory effects of genistein in microglia. Phytomedicine 43:11-20. https://doi.org/10.1016/j.phymed.2018.03.039
  138. Hauser AS, Chavali S, Masuho I, Jahn LJ, Martemyanov KA, Gloriam DE, Babu MM (2018) Pharmacogenomics of GPCR drug targets. Cell 172:41-54 e19. https://doi.org/10.1016/j.cell.2017.11.033
  139. Avilla MN, Malecki KMC, Hahn ME, Wilson RH, Bradfield CA (2020) The Ah receptor: adaptive metabolism, ligand diversity, and the xenokine model. Chem Res Toxicol 33:860-879. https://doi.org/10.1021/acs.chemrestox.9b00476
  140. Safe S, Jin UH, Park H, Chapkin RS, Jayaraman A (2020) Aryl hydrocarbon receptor (AHR) ligands as selective AHR modulators (SAhRMs). Int J Mol Sci. https://doi.org/10.3390/ijms21186654
  141. Xue Z, Li D, Yu W, Zhang Q, Hou X, He Y, Kou X (2017) Mechanisms and therapeutic prospects of polyphenols as modulators of the aryl hydrocarbon receptor. Food Funct 8:1414-1437. https://doi.org/10.1039/c6fo01810f
  142. Park H, Jin UH, Orr AA, Echegaray SP, Davidson LA, Allred CD, Chapkin RS, Jayaraman A, Lee K, Tamamis P et al (2019) Isoflavones as Ah receptor agonists in colon-derived cell lines: structure-activity relationships. Chem Res Toxicol 32:2353-2364. https://doi.org/10.1021/acs.chemrestox.9b00352
  143. Jin UH, Park H, Li X, Davidson LA, Allred C, Patil B, Jayaprakasha G, Orr AA, Mao L, Chapkin RS et al (2018) Structure-dependent modulation of aryl hydrocarbon receptor-mediated activities by flavonoids. Toxicol Sci Off J Soc Toxicol 164:205-217. https://doi.org/10.1093/toxsci/kfy075
  144. Wang K, Lv Q, Miao YM, Qiao SM, Dai Y, Wei ZF (2018) Cardamonin, a natural flavone, alleviates inflammatory bowel disease by the inhibition of NLRP3 inflammasome activation via an AhR/Nrf2/NQO1 pathway. Biochem Pharmacol 155:494-509. https://doi.org/10.1016/j.bcp.2018.07.039
  145. Miao Y, Lv Q, Qiao S, Yang L, Tao Y, Yan W, Wang P, Cao N, Dai Y, Wei Z (2019) Alpinetin improves intestinal barrier homeostasis via regulating AhR/suv39h1/TSC2/mTORC1/autophagy pathway. Toxicol Appl Pharmacol 384:114772. https://doi.org/10.1016/j.taap.2019.114772
  146. Biagioli M, Carino A, Fiorucci C, Annunziato G, Marchiano S, Bordoni M, Roselli R, Giorgio CD, Castiglione F, Ricci P et al (2019) The aryl hydrocarbon receptor (AhR) mediates the counter-regulatory effects of pelargonidins in models of inflammation and metabolic dysfunctions. Nutrients. https://doi.org/10.3390/nu11081820
  147. Wang HK, Yeh CH, Iwamoto T, Satsu H, Shimizu M, Totsuka M (2012) Dietary flavonoid naringenin induces regulatory T cells via an aryl hydrocarbon receptor mediated pathway. J Agric Food Chem 60:2171-2178. https://doi.org/10.1021/jf204625y
  148. Bae MJ, Shin HS, See HJ, Jung SY, Kwon DA, Shon DH (2016) Baicalein induces CD4(+)Foxp3(+) T cells and enhances intestinal barrier function in a mouse model of food allergy. Sci Rep 6:32225. https://doi.org/10.1038/srep32225
  149. Zhu W, Chen X, Yu J, Xiao Y, Li Y, Wan S, Su W, Liang D (2018) Baicalin modulates the Treg/Teff balance to alleviate uveitis by activating the aryl hydrocarbon receptor. Biochem Pharmacol 154:18-27. https://doi.org/10.1016/j.bcp.2018.04.006
  150. Kuiper GG, Lemmen JG, Carlsson B, Corton JC, Safe SH, van der Saag PT, van der Burg B, Gustafsson JA (1998) Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139:4252-4263. https://doi.org/10.1210/endo.139.10.6216
  151. Han DH, Denison MS, Tachibana H, Yamada K (2002) Relationship between estrogen receptor-binding and estrogenic activities of environmental estrogens and suppression by flavonoids. Biosci Biotechnol Biochem 66:1479-1487. https://doi.org/10.1271/bbb.66.1479
  152. Choi SY, Ha TY, Ahn JY, Kim SR, Kang KS, Hwang IK, Kim S (2008) Estrogenic activities of isoflavones and flavones and their structure-activity relationships. Planta Med 74:25-32. https://doi.org/10.1055/s-2007-993760
  153. Cipolletti M, Solar Fernandez V, Montalesi E, Marino M, Fiocchetti M (2018) Beyond the antioxidant activity of dietary polyphenols in cancer: the modulation of estrogen receptors (ERs) signaling. Int J Mol Sci. https://doi.org/10.3390/ijms19092624
  154. Dominguez-Lopez I, Yago-Aragon M, Salas-Huetos A, Tresserra-Rimbau A, Hurtado-Barroso S (2020) Effects of dietary phytoestrogens on hormones throughout a human lifespan: a review. Nutrients. https://doi.org/10.3390/nu12082456
  155. Ding M, Franke AA, Rosner BA, Giovannucci E, van Dam RM, Tworoger SS, Hu FB, Sun Q (2015) Urinary isoflavonoids and risk of type 2 diabetes: a prospective investigation in US women. Br J Nutr 114:1694-1701. https://doi.org/10.1017/S0007114515003359
  156. Ding M, Pan A, Manson JE, Willett WC, Malik V, Rosner B, Giovannucci E, Hu FB, Sun Q (2016) Consumption of soy foods and isoflavones and risk of type 2 diabetes: a pooled analysis of three US cohorts. Eur J Clin Nutr 70:1381-1387. https://doi.org/10.1038/ejcn.2016.117
  157. Nakamoto M, Otsuka R, Nishita Y, Tange C, Tomida M, Kato Y, Imai T, Sakai T, Ando F, Shimokata H (2018) Soy food and isoflavone intake reduces the risk of cognitive impairment in elderly Japanese women. Eur J Clin Nutr 72:1458-1462. https://doi.org/10.1038/s41430-017-0061-2
  158. Ma L, Liu G, Ding M, Zong G, Hu FB, Willett WC, Rimm EB, Manson JE, Sun Q (2020) Isoflavone Intake and the risk of coronary heart disease in US men and women: results from 3 prospective cohort studies. Circulation 141:1127-1137. https://doi.org/10.1161/CIRCULATIONAHA.119.041306
  159. Lee AH, Su D, Pasalich M, Tang L, Binns CW, Qiu L (2014) Soy and isoflavone intake associated with reduced risk of ovarian cancer in southern Chinese women. Nutr Res 34:302-307. https://doi.org/10.1016/j.nutres.2014.02.005
  160. Cutler GJ, Nettleton JA, Ross JA, Harnack LJ, Jacobs DR Jr, Scrafford CG, Barraj LM, Mink PJ, Robien K (2008) Dietary flavonoid intake and risk of cancer in postmenopausal women: the Iowa Women's Health Study. Int J Cancer J Int Cancer 123:664-671. https://doi.org/10.1002/ijc.23564
  161. Lee SA, Shu XO, Li H, Yang G, Cai H, Wen W, Ji BT, Gao J, Gao YT, Zheng W (2009) Adolescent and adult soy food intake and breast cancer risk: results from the Shanghai Women's Health Study. Am J Clin Nutr 89:1920-1926. https://doi.org/10.3945/ajcn.2008.27361
  162. Sonoda J, Pei L, Evans RM (2008) Nuclear receptors: decoding metabolic disease. FEBS Lett 582:2-9. https://doi.org/10.1016/j.febslet.2007.11.016
  163. Takeuchi S, Takahashi T, Sawada Y, Iida M, Matsuda T, Kojima H (2009) Comparative study on the nuclear hormone receptor activity of various phytochemicals and their metabolites by reporter gene assays using Chinese hamster ovary cells. Biol Pharm Bull 32:195-202. https://doi.org/10.1248/bpb.32.195
  164. Dean M, Austin J, Jinhong R, Johnson ME, Lantvit DD, Burdette JE (2018) The flavonoid apigenin is a progesterone receptor modulator with in vivo activity in the uterus. Horm Cancer 9:265-277. https://doi.org/10.1007/s12672-018-0333-x
  165. Hall JM, Powell HA, Rajic L, Korach KS (2019) The role of dietary phytoestrogens and the nuclear receptor ppargamma in adipogenesis: an in vitro study. Environ Health Perspect 127:37007. https://doi.org/10.1289/EHP3444
  166. Li T, Yan F, Meng X, Wang J, Ting Kam RK, Zeng X, Liu Z, Zhou H, Yang F, Ren R et al (2018) Improvement of glucocorticoid-impaired thymus function by dihydromyricetin via up-regulation of PPARgamma-associated fatty acid metabolism. Pharmacol Res 137:76-88. https://doi.org/10.1016/j.phrs.2018.09.011
  167. Xu LJ, Yu MH, Huang CY, Niu LX, Wang YF, Wu CZ, Yang PM, Hu X (2018) Isoprenylated flavonoids from Morus nigra and their PPAR gamma agonistic activities. Fitoterapia 127:109-114. https://doi.org/10.1016/j.fitote.2018.02.004
  168. Cao H, Liu J, Shen P, Cai J, Han Y, Zhu K, Fu Y, Zhang N, Zhang Z, Cao Y (2018) Protective effect of naringin on DSS-induced ulcerative colitis in mice. J Agric Food Chem 66:13133-13140. https://doi.org/10.1021/acs.jafc.8b03942
  169. Singh AK, Raj V, Keshari AK, Rai A, Kumar P, Rawat A, Maity B, Kumar D, Prakash A, De A et al (2018) Isolated mangiferin and naringenin exert antidiabetic effect via PPARgamma/GLUT4 dual agonistic action with strong metabolic regulation. Chem Biol Interact 280:33-44. https://doi.org/10.1016/j.cbi.2017.12.007
  170. Hadrich F, Sayadi S (2018) Apigetrin inhibits adipogenesis in 3T3-L1 cells by downregulating PPARgamma and CEBP-alpha. Lipids Health Dis 17:95. https://doi.org/10.1186/s12944-018-0738-0
  171. Huang D, Li Z, Chen B, Fang G, Sun X, Li F, Xu H, Chen Y, Ding W (2018) Naringin protects against steroidinduced avascular necrosis of the femoral head through upregulation of PPARgamma and activation of the Notch signaling pathway. Mol Med Rep 17:3328-3335. https://doi.org/10.3892/mmr.2017.8247
  172. Jung Y, Kim JC, Choi Y, Lee S, Kang KS, Kim YK, Kim SN (2017) Eupatilin with PPARalpha agonistic effects inhibits TNFalpha-induced MMP signaling in HaCaT cells. Biochem Biophys Res Commun 493:220-226. https://doi.org/10.1016/j.bbrc.2017.09.043
  173. Takashina Y, Manabe A, Tabuchi Y, Cyanidin IA (2019) Increases the expression of Mg(2+) Transport carriers mediated by the activation of PPARalpha in colonic epithelial MCE301 cells. Nutrients. https://doi.org/10.3390/nu11030641
  174. Suzuki M, Nakamura F, Taguchi E, Nakata M, Wada F, Takihi M, Inoue T, Ohta S, Kawachi H (2018) 4',6-dimethoxyisoflavone-7-O-beta-D-glucopyranoside (wistin) is a peroxisome proliferator-activated receptor alpha (PPARalpha) agonist in mouse hepatocytes. Mol Cell Biochem 446:35-41. https://doi.org/10.1007/s11010-018-3270-7
  175. Fouache A, Zabaiou N, De Joussineau C, Morel L, Silvente-Poirot S, Namsi A, Lizard G, Poirot M, Makishima M, Baron S et al (2019) Flavonoids differentially modulate liver X receptors activity-Structure-function relationship analysis. J Steroid Biochem Mol Biol 190:173-182. https://doi.org/10.1016/j.jsbmb.2019.03.028
  176. Haque MW, Bose P, Siddique MUM, Sunita P, Lapenna A, Pattanayak SP (2018) Taxifolin binds with LXR (alpha & beta) to attenuate DMBA-induced mammary carcinogenesis through mTOR/Maf-1/PTEN pathway. Biomed Pharmacother 105:27-36. https://doi.org/10.1016/j.biopha.2018.05.114
  177. Luo T, Miranda-Garcia O, Sasaki G, Wang J, Shay NF (2018) Genistein and daidzein decrease food intake and body weight gain in mice, and alter LXR signaling in vivo and in vitro. Food Funct 9:6257-6267. https://doi.org/10.1039/c8fo01718b
  178. Zhang G, Liu S, Tan W, Verma R, Chen Y, Sun D, Huan Y, Jiang Q, Wang X, Wang N et al (2017) Synthesis and biological evaluations of chalcones, flavones and chromenes as farnesoid x receptor (FXR) antagonists. Eur J Med Chem 129:303-309. https://doi.org/10.1016/j.ejmech.2017.02.037
  179. Waizenegger J, Lenze D, Luckert C, Seidel A, Lampen A, Hessel S (2015) Dose-dependent induction of signaling pathways by the flavonoid quercetin in human primary hepatocytes: a transcriptomic study. Mol Nutr Food Res 59:1117-1129. https://doi.org/10.1002/mnfr.201400764
  180. Li G, Lin W, Araya JJ, Chen T, Timmermann BN, Guo GL (2012) A tea catechin, epigallocatechin-3-gallate, is a unique modulator of the farnesoid X receptor. Toxicol Appl Pharmacol 258:268-274. https://doi.org/10.1016/j.taap.2011.11.006
  181. Liu M, Zhang G, Song M, Wang J, Shen C, Chen Z, Huang X, Gao Y, Zhu C, Lin C et al (2020) Activation of farnesoid X receptor by schaftoside ameliorates acetaminophen-induced hepatotoxicity by modulating oxidative stress and inflammation. Antioxid Redox Signal 33:87-116. https://doi.org/10.1089/ars.2019.7791
  182. Yang L, Broderick D, Campbell Y, Gombart AF, Stevens JF, Jiang Y, Hsu VL, Bisson WH, Maier CS (2016) Conformational modulation of the farnesoid X receptor by prenylflavonoids: Insights from hydrogen deuterium exchange mass spectrometry (HDX-MS), fluorescence titration and molecular docking studies. Biochem Biophys Acta 1864:1667-1677. https://doi.org/10.1016/j.bbapap.2016.08.019
  183. Lau AJ, Chang TK (2015) 3-Hydroxyflavone and structural analogues differentially activate pregnane X receptor: Implication for inflammatory bowel disease. Pharmacol Res 100:64-72. https://doi.org/10.1016/j.phrs.2015.07.031
  184. Dou W, Zhang J, Li H, Kortagere S, Sun K, Ding L, Ren G, Wang Z, Mani S (2014) Plant flavonol isorhamnetin attenuates chemically induced inflammatory bowel disease via a PXR-dependent pathway. J Nutr Biochem 25:923-933. https://doi.org/10.1016/j.jnutbio.2014.04.006
  185. Li Y, Ross-Viola JS, Shay NF, Moore DD, Ricketts ML (2009) Human CYP3A4 and murine Cyp3A11 are regulated by equol and genistein via the pregnane X receptor in a species-specific manner. J Nutr 139:898-904. https://doi.org/10.3945/jn.108.103572
  186. Li X, Li S, Chen M, Wang J, Xie B, Sun Z (2018) (-)-Epigallocatechin-3-gallate (EGCG) inhibits starch digestion and improves glucose homeostasis through direct or indirect activation of PXR/CAR-mediated phase II metabolism in diabetic mice. Food Funct 9:4651-4663. https://doi.org/10.1039/c8fo01293h
  187. Yu Z, Yue B, Ding L, Luo X, Ren Y, Zhang J, Mani S, Wang Z, Dou W (2020) Activation of PXR by Alpinetin contributes to abrogate chemically induced inflammatory bowel disease. Front Pharmacol 11:474. https://doi.org/10.3389/fphar.2020.00474

Cited by

  1. Flavonoids kaempferol and quercetin are nuclear receptor 4A1 (NR4A1, Nur77) ligands and inhibit rhabdomyosarcoma cell and tumor growth vol.40, pp.1, 2021, https://doi.org/10.1186/s13046-021-02199-9
  2. Moringa oleifera Lam. in Diabetes Mellitus: A Systematic Review and Meta-Analysis vol.26, pp.12, 2021, https://doi.org/10.3390/molecules26123513
  3. Anti-Inflammation Activity of Flavones and Their Structure-Activity Relationship vol.69, pp.26, 2021, https://doi.org/10.1021/acs.jafc.1c02015
  4. Metabolomics and Molecular Networking to Characterize the Chemical Space of Four Momordica Plant Species vol.11, pp.11, 2021, https://doi.org/10.3390/metabo11110763
  5. Biological Effects of Gyrophoric Acid and Other Lichen Derived Metabolites, on Cell Proliferation, Apoptosis and Cell Signaling pathways vol.351, 2021, https://doi.org/10.1016/j.cbi.2021.109768
  6. Cardiovascular protection effect of a Northeastern Brazilian lyophilized red wine in spontaneously hypertensive rats vol.88, 2021, https://doi.org/10.1016/j.jff.2021.104868