References
- Shen, H., Xu, J., Yu, B., Tang, Q., Chen, B., Lou, C., Qiao, Y.: Seamless transition strategy for wide speed-range sensorless IPMSM drives with a virtual q-axis inductance. J Power Electron. 19(5), 1224-1234 (2019) https://doi.org/10.6113/jpe.2019.19.5.1224
- Liu, G., Yang, Y., Chen, Q.: Virtual signal injected MTPA control for DTC five-phase IPMSM drives. J Power Electron. 19(4), 956-967 (2019) https://doi.org/10.6113/JPE.2019.19.4.956
- Chaoui, H., Okoye, O., Khayamy, M.: Current sensorless MTPA for IPMSM drives. IEEE/ASME Trans. Mechatron. 22(4), 1585-1593 (2017) https://doi.org/10.1109/TMECH.2017.2715502
- Li, K., Wang, Y.: Maximum torque per ampere (MTPA) control for IPMSM drives using signal injection and an MTPA control law. IEEE Trans. Ind. Inf. 15(10), 5588-5598 (2019) https://doi.org/10.1109/tii.2019.2905929
- Uddin, M.N., Radwan, T.S., Rahman, M.A.: Performance of interior permanent magnet motor drive over wide speed range. IEEE Trans. Energy Convers. 17(1), 79-84 (2002) https://doi.org/10.1109/60.986441
- Jung, S.Y., Hong, J., Nam, K.: Current minimizing torque control of the IPMSM using Ferrari's method. IEEE Trans. Power Electron. 28(12), 5603-5617 (2013) https://doi.org/10.1109/TPEL.2013.2245920
- Consoli, A., Scarcella, G., Scelba, G., Testa, A.: Steady-state and transient operation of IPMSMs under maximum-torque-per-ampere control. IEEE Trans. Ind. Appl. 46(1), 121-129 (2010) https://doi.org/10.1109/TIA.2009.2036665
- Jeong, Y., Sul, S., Hiti, S., Rahman, K.M.: Online minimum-copper-loss control of an interior permanent-magnet synchronous machine for automotive applications. IEEE Trans. Ind. Appl. 42(5), 1222-1229 (2006) https://doi.org/10.1109/TIA.2006.880910
- Dianov, A., Young-Kwan, K., Sang-Joon, L., Sang-Taek, L.: Robust self-tuning MTPA algorithm for IPMSM drives. Proc. Conf. IEEE Ind. Electron (2008). https://doi.org/10.1109/IECON.2008.4758151
- Wang, G., Li, Z., Zhang, G., Yu, Y., Xu, D.: Quadrature PLL-based high order sliding-mode observer for IPMSM sensorless control with online MTPA control strategy. IEEE Trans. Energy Convers. 28(1), 214-224 (2013) https://doi.org/10.1109/TEC.2012.2228484
- Antonello, R., Carraro, M., Zigliotto, M.: Maximum-torque-per-ampere operation of anisotropic synchronous permanent-magnet motors based on extremum seeking control. IEEE Trans. Ind. Electron. 61(9), 5086-5093 (2014) https://doi.org/10.1109/TIE.2013.2278518
- Kim, H., Hartwig, J., Lorenz, R.D.: Using on-line parameter estimation to improve efficiency of IPM machine drives. Proc. 2002 IEEE 33rd Annual IEEE Power Electronics Specialists Conference. 815-820 (2002)
- Kim, S., Yoon, Y., Sul, S., Ide, K.: Maximum torque per ampere (MTPA) control of an IPM machine based on signal injection considering inductance saturation. IEEE Trans. Power Electron. 28(1), 488-497 (2013) https://doi.org/10.1109/TPEL.2012.2195203
- Liu, G., Wang, J., Zhao, W., Chen, Q.: A novel MTPA control strategy for IPMSM drives by space vector signal injection. IEEE Trans. Ind. Electron. 64(12), 9243-9252 (2017) https://doi.org/10.1109/TIE.2017.2711507
- Bolognani, S., Petrella, R., Prearo, A., Sgarbossa, L.: Automatic tracking of MTPA trajectory in IPM motor drives based on AC current injection. IEEE Trans. Ind Appl. 47(1), 105-114 (2011) https://doi.org/10.1109/TIA.2010.2090842
- Zhao, Y.: Online MTPA control for salient-pole PMSMs using square-wave current injection. Proc. 2016 IEEE Energy Conversion Congress and Exposition (ECCE), 1-8 (2016)
- Zhou, X., Zhou, Y., Wang, H., Lu, M., Zeng, F., Yu, Y.: An improved MTPA control based on amplitude-adjustable square wave injection. IEEE Trans. Energy Convers. 35(2), 956-965 (2020) https://doi.org/10.1109/tec.2020.2968737
- Zhao, Y.: Virtual square-wave current injection based maximum torque per ampere control for interior permanent-magnet synchronous machines. Proc. 2016 IEEE Transportation Electrification Conference and Expo (ITEC), 1-6 (2016)
- Sun, T., Koc, M., Wang, J.: MTPA control of IPMSM drives based on virtual signal injection considering machine parameter variations. IEEE Trans. Ind. Electron. 65(8), 6089-6098 (2018) https://doi.org/10.1109/tie.2017.2784409
- Sun, T., Wang, J., Chen, X.: Maximum torque per ampere (MTPA) control for interior permanent magnet synchronous machine drives based on virtual signal injection. IEEE Trans. Power Electron. 30(9), 5036-5045 (2015) https://doi.org/10.1109/TPEL.2014.2365814
- Sun, T., Wang, J., Koc, M.: On accuracy of virtual signal injection based MTPA operation of interior permanent magnet synchronous machine drives. IEEE Trans. Power Electron. 32(9), 7405-7408 (2017) https://doi.org/10.1109/TPEL.2016.2638020
- Li, K., Wang, Y.: Maximum torque per ampere (MTPA) control for IPMSM drives based on a variable-equivalent-parameter MTPA control law. IEEE Trans. Power Electron. 34(7), 7092-7102 (2019) https://doi.org/10.1109/tpel.2018.2877740
- Huang, W., Zhang, Y., Zhang, X., Sun, G.: Accurate torque control of interior permanent magnet synchronous machine. IEEE Trans. Energy Convers. 29(1), 29-37 (2014) https://doi.org/10.1109/TEC.2013.2290868
- Kim, S., Park, S.: Compensation of dead-time effects based on adaptive harmonic filtering in the vector-controlled AC motor drives. IEEE Trans. Ind. Electron. 54(3), 1768-1777 (2007) https://doi.org/10.1109/TIE.2007.895132
- Hwang, S., Kim, J.: Dead time compensation method for voltage-fed PWM inverter. IEEE Trans. Energy Convers. 25(1), 1-10 (2010) https://doi.org/10.1109/TEC.2009.2031811
- Qiu, T., Wen, X., Zhao, F.: Adaptive-linear-neuron-based dead-time effects compensation scheme for PMSM drives. IEEE Trans. Power Electron. 31(3), 2530-2538 (2016) https://doi.org/10.1109/TPEL.2015.2427914
- Urasaki, N., Senjyu, T., Funabashi, T., Sekine, H.: An adaptive dead-time compensation strategy for a permanent magnet synchronous motor drive using neural network. J Power Electron. 6(4), 279-289 (2006)
- Wang, G., Yang, L., Yuan, B., Wang, B., Zhang, G., Xu, D.: Pseudo-random high-frequency square-wave voltage injection based sensorless control of IPMSM drives for audible noise reduction. IEEE Trans. Ind. Electron. 63(12), 7423-7433 (2016) https://doi.org/10.1109/TIE.2016.2594171