DOI QR코드

DOI QR Code

MTPA-based high-frequency square wave voltage signal injection strategy for IPMSM control

  • Zhang, Zeyu (National Key Laboratory of Science and Technology on Multispectral Information Processing and Key Laboratory of Image Processing and Intelligent Control, School of Artifcial Intelligence and Automation, Huazhong University of Science and Technology) ;
  • Shen, Anwen (National Key Laboratory of Science and Technology on Multispectral Information Processing and Key Laboratory of Image Processing and Intelligent Control, School of Artifcial Intelligence and Automation, Huazhong University of Science and Technology) ;
  • Li, Peihe (National Key Laboratory of Science and Technology on Multispectral Information Processing and Key Laboratory of Image Processing and Intelligent Control, School of Artifcial Intelligence and Automation, Huazhong University of Science and Technology) ;
  • Luo, Xin (National Key Laboratory of Science and Technology on Multispectral Information Processing and Key Laboratory of Image Processing and Intelligent Control, School of Artifcial Intelligence and Automation, Huazhong University of Science and Technology) ;
  • Tang, Qipeng (National Key Laboratory of Science and Technology on Multispectral Information Processing and Key Laboratory of Image Processing and Intelligent Control, School of Artifcial Intelligence and Automation, Huazhong University of Science and Technology)
  • Received : 2020.12.31
  • Accepted : 2021.07.12
  • Published : 2021.10.20

Abstract

This paper proposes a high-frequency (HF) square wave voltage signal injection strategy for interior permanent magnet synchronous motor (IPMSM) maximum torque per ampere (MTPA) drives. Unlike previous methods, this strategy injects a square wave HF signal into the voltage directly regardless of the current loop bandwidth limitations. In addition, the injected frequency can surpass the cut-off frequency of the current loop. Therefore, the disturbance caused by the injected signal can be reduced. The process of MTPA operating point adjustment only needs to sample and analyze the current amplitude without additional digital filters. Thus, the dynamic response promotes, and avoids the extra hardware and calculation burden. To decrease the convergence time when the load changes rapidly, an equivalent mathematical model of an IPMSM is employed to provide prior current references. Both simulation and experimental results confirm the validity and feasibility of the proposed strategy.

Keywords

References

  1. Shen, H., Xu, J., Yu, B., Tang, Q., Chen, B., Lou, C., Qiao, Y.: Seamless transition strategy for wide speed-range sensorless IPMSM drives with a virtual q-axis inductance. J Power Electron. 19(5), 1224-1234 (2019) https://doi.org/10.6113/jpe.2019.19.5.1224
  2. Liu, G., Yang, Y., Chen, Q.: Virtual signal injected MTPA control for DTC five-phase IPMSM drives. J Power Electron. 19(4), 956-967 (2019) https://doi.org/10.6113/JPE.2019.19.4.956
  3. Chaoui, H., Okoye, O., Khayamy, M.: Current sensorless MTPA for IPMSM drives. IEEE/ASME Trans. Mechatron. 22(4), 1585-1593 (2017) https://doi.org/10.1109/TMECH.2017.2715502
  4. Li, K., Wang, Y.: Maximum torque per ampere (MTPA) control for IPMSM drives using signal injection and an MTPA control law. IEEE Trans. Ind. Inf. 15(10), 5588-5598 (2019) https://doi.org/10.1109/tii.2019.2905929
  5. Uddin, M.N., Radwan, T.S., Rahman, M.A.: Performance of interior permanent magnet motor drive over wide speed range. IEEE Trans. Energy Convers. 17(1), 79-84 (2002) https://doi.org/10.1109/60.986441
  6. Jung, S.Y., Hong, J., Nam, K.: Current minimizing torque control of the IPMSM using Ferrari's method. IEEE Trans. Power Electron. 28(12), 5603-5617 (2013) https://doi.org/10.1109/TPEL.2013.2245920
  7. Consoli, A., Scarcella, G., Scelba, G., Testa, A.: Steady-state and transient operation of IPMSMs under maximum-torque-per-ampere control. IEEE Trans. Ind. Appl. 46(1), 121-129 (2010) https://doi.org/10.1109/TIA.2009.2036665
  8. Jeong, Y., Sul, S., Hiti, S., Rahman, K.M.: Online minimum-copper-loss control of an interior permanent-magnet synchronous machine for automotive applications. IEEE Trans. Ind. Appl. 42(5), 1222-1229 (2006) https://doi.org/10.1109/TIA.2006.880910
  9. Dianov, A., Young-Kwan, K., Sang-Joon, L., Sang-Taek, L.: Robust self-tuning MTPA algorithm for IPMSM drives. Proc. Conf. IEEE Ind. Electron (2008). https://doi.org/10.1109/IECON.2008.4758151
  10. Wang, G., Li, Z., Zhang, G., Yu, Y., Xu, D.: Quadrature PLL-based high order sliding-mode observer for IPMSM sensorless control with online MTPA control strategy. IEEE Trans. Energy Convers. 28(1), 214-224 (2013) https://doi.org/10.1109/TEC.2012.2228484
  11. Antonello, R., Carraro, M., Zigliotto, M.: Maximum-torque-per-ampere operation of anisotropic synchronous permanent-magnet motors based on extremum seeking control. IEEE Trans. Ind. Electron. 61(9), 5086-5093 (2014) https://doi.org/10.1109/TIE.2013.2278518
  12. Kim, H., Hartwig, J., Lorenz, R.D.: Using on-line parameter estimation to improve efficiency of IPM machine drives. Proc. 2002 IEEE 33rd Annual IEEE Power Electronics Specialists Conference. 815-820 (2002)
  13. Kim, S., Yoon, Y., Sul, S., Ide, K.: Maximum torque per ampere (MTPA) control of an IPM machine based on signal injection considering inductance saturation. IEEE Trans. Power Electron. 28(1), 488-497 (2013) https://doi.org/10.1109/TPEL.2012.2195203
  14. Liu, G., Wang, J., Zhao, W., Chen, Q.: A novel MTPA control strategy for IPMSM drives by space vector signal injection. IEEE Trans. Ind. Electron. 64(12), 9243-9252 (2017) https://doi.org/10.1109/TIE.2017.2711507
  15. Bolognani, S., Petrella, R., Prearo, A., Sgarbossa, L.: Automatic tracking of MTPA trajectory in IPM motor drives based on AC current injection. IEEE Trans. Ind Appl. 47(1), 105-114 (2011) https://doi.org/10.1109/TIA.2010.2090842
  16. Zhao, Y.: Online MTPA control for salient-pole PMSMs using square-wave current injection. Proc. 2016 IEEE Energy Conversion Congress and Exposition (ECCE), 1-8 (2016)
  17. Zhou, X., Zhou, Y., Wang, H., Lu, M., Zeng, F., Yu, Y.: An improved MTPA control based on amplitude-adjustable square wave injection. IEEE Trans. Energy Convers. 35(2), 956-965 (2020) https://doi.org/10.1109/tec.2020.2968737
  18. Zhao, Y.: Virtual square-wave current injection based maximum torque per ampere control for interior permanent-magnet synchronous machines. Proc. 2016 IEEE Transportation Electrification Conference and Expo (ITEC), 1-6 (2016)
  19. Sun, T., Koc, M., Wang, J.: MTPA control of IPMSM drives based on virtual signal injection considering machine parameter variations. IEEE Trans. Ind. Electron. 65(8), 6089-6098 (2018) https://doi.org/10.1109/tie.2017.2784409
  20. Sun, T., Wang, J., Chen, X.: Maximum torque per ampere (MTPA) control for interior permanent magnet synchronous machine drives based on virtual signal injection. IEEE Trans. Power Electron. 30(9), 5036-5045 (2015) https://doi.org/10.1109/TPEL.2014.2365814
  21. Sun, T., Wang, J., Koc, M.: On accuracy of virtual signal injection based MTPA operation of interior permanent magnet synchronous machine drives. IEEE Trans. Power Electron. 32(9), 7405-7408 (2017) https://doi.org/10.1109/TPEL.2016.2638020
  22. Li, K., Wang, Y.: Maximum torque per ampere (MTPA) control for IPMSM drives based on a variable-equivalent-parameter MTPA control law. IEEE Trans. Power Electron. 34(7), 7092-7102 (2019) https://doi.org/10.1109/tpel.2018.2877740
  23. Huang, W., Zhang, Y., Zhang, X., Sun, G.: Accurate torque control of interior permanent magnet synchronous machine. IEEE Trans. Energy Convers. 29(1), 29-37 (2014) https://doi.org/10.1109/TEC.2013.2290868
  24. Kim, S., Park, S.: Compensation of dead-time effects based on adaptive harmonic filtering in the vector-controlled AC motor drives. IEEE Trans. Ind. Electron. 54(3), 1768-1777 (2007) https://doi.org/10.1109/TIE.2007.895132
  25. Hwang, S., Kim, J.: Dead time compensation method for voltage-fed PWM inverter. IEEE Trans. Energy Convers. 25(1), 1-10 (2010) https://doi.org/10.1109/TEC.2009.2031811
  26. Qiu, T., Wen, X., Zhao, F.: Adaptive-linear-neuron-based dead-time effects compensation scheme for PMSM drives. IEEE Trans. Power Electron. 31(3), 2530-2538 (2016) https://doi.org/10.1109/TPEL.2015.2427914
  27. Urasaki, N., Senjyu, T., Funabashi, T., Sekine, H.: An adaptive dead-time compensation strategy for a permanent magnet synchronous motor drive using neural network. J Power Electron. 6(4), 279-289 (2006)
  28. Wang, G., Yang, L., Yuan, B., Wang, B., Zhang, G., Xu, D.: Pseudo-random high-frequency square-wave voltage injection based sensorless control of IPMSM drives for audible noise reduction. IEEE Trans. Ind. Electron. 63(12), 7423-7433 (2016) https://doi.org/10.1109/TIE.2016.2594171