Acknowledgement
This research work was supported by National Natural Science Foundation of P. R. of China (Grant number 51277115), and the Shandong Provincial Natural Science Foundation (Grant number ZR2018MEE037).
References
- Spagnuolo, G., Petrone, G., Araujo, S.V., et al.: Renewable energy operation and conversion schemes: a summary of discussions during the seminar on renewable energy systems. IEEE Ind. Electron. Mag. 4(1), 38-51 (2010) https://doi.org/10.1109/MIE.2010.935863
- Zhao, B., Song, Q., Liu, W., et al.: Dead-time effect of the high frequency isolated bidirectional full-bridge DC-DC converter: comprehensive theoretical analysis and experimental verification. IEEE Trans. Power Electron. 29(4), 1667-1680 (2014) https://doi.org/10.1109/TPEL.2013.2271511
- Jung, J., Kim, H., Ryu, M., et al.: Design methodology of bidirectional CLLC resonant converter for high-frequency isolation of DC distribution systems. IEEE Trans. Power Electron. 28(4), 1741-1755 (2013) https://doi.org/10.1109/TPEL.2012.2213346
- Wang, Z., Li, H.: A soft switching three-phase current-fed bidirectional DC-DC converter with high efficiency over a wide input voltage range. IEEE Trans. Power Electron. 27(2), 669-684 (2012) https://doi.org/10.1109/TPEL.2011.2160284
- Hu, X., Wang, J., Li, L., et al.: A three-winding coupled-inductor DC-DC converter topology with high voltage gain and reduced switch stress. IEEE Trans. Power Electron. 33(2), 1453-1462 (2018) https://doi.org/10.1109/TPEL.2017.2689806
- Henn, G.A.L., Silva, R.N.A.L., Praca, P.P., et al.: Interleaved-boost converter with high voltage gain. IEEE Trans. Power Electron. 25(11), 2753-2761 (2010) https://doi.org/10.1109/TPEL.2010.2049379
- Li, W., He, X.: Review of nonisolated high-step-up DC/DC converters in photovoltaic grid-connected applications. IEEE Trans. Ind. Electron. 58(4), 1239-1250 (2011) https://doi.org/10.1109/TIE.2010.2049715
- Forouzesh, M., Siwakoti, Y.P., Gorji, S.A., et al.: Step-up DC-DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications. IEEE Trans. Power Electron. 32(12), 9143-9178 (2017) https://doi.org/10.1109/TPEL.2017.2652318
- Morales-Saldana, J.A., Gutierrez, E.E.C., Leyva-Ramos, J.: Modeling of switch-mode DC-DC cascade converters. IEEE Trans. Aerosp. Electron Syst. 38(1), 295-299 (2002) https://doi.org/10.1109/7.993249
- Leyva-Ramos, J., Ortiz-Lopez, M.G., Diaz-Saldierna, L.H., et al.: Switching regulator using a quadratic boost converter for wide DC conversion ratios. IET Power Electron. 2(5), 605-613 (2009) https://doi.org/10.1049/iet-pel.2008.0169
- Axelrod, B., Berkovich, Y., Ioinovici, A.: Switched-capacitor/switched-inductor structures for getting transformerless hybrid DC-DC PWM converters. IEEE Trans. Circuits Syst. 55(2), 687-696 (2008) https://doi.org/10.1109/TCSI.2008.916403
- Ismail, E.H., Al-Saffar, M.A., Sabzail, A.J.: A family of single-switch PWM converters with high step-up conversion ratio. IEEE Trans. Circuits Syst. 55(4), 1159-1171 (2008) https://doi.org/10.1109/TCSI.2008.916427
- Nouri, T., Hosseini, S.H., Babaei, E., et al.: Generalised transformerless ultra step-up DC-DC converter with reduced voltage stress on semiconductors. IET Power Electron. 7(11), 2791-2805 (2014) https://doi.org/10.1049/iet-pel.2013.0933
- Zhang, Y., Gao, Y., Zhou, L., et al.: A switched-capacitor bidirectional DC-DC converter with wide voltage gain range for electric vehicles with hybrid energy sources. IEEE Trans. Power Electron. 33(11), 9459-9469 (2018) https://doi.org/10.1109/tpel.2017.2788436
- Pires, V.F., Foito, D., Cordeiro, A.: A DC-DC converter with quadratic gain and bidirectional capability for batteries/supercapacitors. IEEE Trans. Ind. Appl. 54(1), 274-285 (2018) https://doi.org/10.1109/tia.2017.2748926
- Baddipadiga, B.P., Ferdowsi, M.: A high-voltage-gain DC-DC converter based on modified dickson charge pump voltage multiplier. IEEE Trans. Power Electron. 32(10), 7707-7715 (2017) https://doi.org/10.1109/TPEL.2016.2594016
- Zhu, B., Zeng, Q., Vilathgamuwa, D.M., et al.: Non-isolated high-voltage gain dual-input DC/DC converter with a ZVT auxiliary circuit. IET Power Electron. 12(4), 861-868 (2019) https://doi.org/10.1049/iet-pel.2018.5465
- Zhao, Q., Lee, C.: High-efficiency, high step-up DC-DC converter. IEEE Trans. Power Electron. 18(1), 65-73 (2003) https://doi.org/10.1109/TPEL.2002.807188
- Wu, T., Lai, Y., Hung, J., et al.: Boost converter with coupled inductors and buck-boost type of active clamp. IEEE Trans. Ind. Electron. 55(1), 154-162 (2008) https://doi.org/10.1109/TIE.2007.903925
- Wai, R., Duan, R.: High step-up converter with coupled-inductor. IEEE Trans. Power Electron. 20(5), 1025-1035 (2005)
- Liu, H., Wang, L., Ji, Y., et al.: A novel reversal coupled inductor high-conversion-ratio bidirectional DC-DC converter. IEEE Trans. Power Electron. 33(6), 4968-4979 (2018) https://doi.org/10.1109/tpel.2017.2725358
- Lee, Y., Ko, Y., Cheng, M., et al.: Multiphase zero-current switching bidirectional converters and battery energy storage application. IEEE Trans. Power Electron. 28(8), 3806-3815 (2013) https://doi.org/10.1109/TPEL.2012.2227822
- Kwon, M., Oh, S., Choi, S.: High gain soft-switching bidirectional DC-DC converter for eco-friendly vehicles. IEEE Trans. Power Electron. 29(4), 1659-1666 (2014) https://doi.org/10.1109/TPEL.2013.2271328
- Shenoy, P.S., Amaro, M., Morroni, J., et al.: Comparison of a buck converter and a series capacitor buck converter for high-frequency, high-conversion-ratio voltage regulators. IEEE Trans. Power Electron. 31(10), 7006-7015 (2016) https://doi.org/10.1109/TPEL.2015.2508018
- Kim, K., Cha, H., Park, S., et al.: A modified series-capacitor high conversion ratio DC-DC converter eliminating start-up voltage stress problem. IEEE Trans. Power Electron. 33(1), 8-12 (2018) https://doi.org/10.1109/TPEL.2017.2705705
- Zhang, L., Chakraborty, S.: An interleaved series-capacitor tapped buck converter for high step-down DC/DC application. IEEE Trans. Power Electron. 3(7), 6565-6574 (2019) https://doi.org/10.1109/TPEL.2018.2877309
- Roy, J., Ayyanar, R.: Sensor-less current sharing over wide operating range for extended-duty-ratio boost converter. IEEE Trans. Power Electron. 32(11), 8763-8777 (2017) https://doi.org/10.1109/TPEL.2016.2640319