DOI QR코드

DOI QR Code

Wide input/output control strategy for multiphase series capacitor bidirectional DC-DC converters

  • Guo, Zheng (School of Electrical Engineering, Shandong University) ;
  • Wang, Yubin (School of Electrical Engineering, Shandong University) ;
  • Wang, Fan (School of Electrical Engineering, Shandong University) ;
  • Tian, Xinna (School of Electrical Engineering, Shandong University) ;
  • Dong, Yuxiang (School of Electrical Engineering, Shandong University)
  • Received : 2020.09.24
  • Accepted : 2021.01.19
  • Published : 2021.05.20

Abstract

The series capacitor converter is one kind of high-gain bidirectional DC-DC converter based on interleaved and switched capacitor techniques. For the n-phase series capacitor converter, n times voltage gain when compared with the traditional boost converter under a specific duty cycle, as well as automatic current sharing among phases can be achieved. The specific duty cycle is (n - 1)/n to 1 in the boost mode and 0 to 1/n in the buck mode, which means that it is not suitable for wide input and/or wide output applications. To solve this issue, an 180° interleaved switching strategy is proposed in this paper. The proposed strategy is more suitable for converters to widen the working duty cycle range. The working principle, voltage gain and current distribution/sharing characteristics with the duty cycle ranging from 0 to 1 are analyzed and calculated in greater detail. In addition, as one of the n-phase series capacitor converters, a small signal model of a three-phase series capacitor converter is built, and a dual closed-loop controller is studied and designed. Finally, an experimental prototype with an input voltage that varies from 10 to 30 V and an output voltage of 100 V is built and tested. Results obtained with the prototype verify the correctness of the proposed switching strategy.

Keywords

Acknowledgement

This research work was supported by National Natural Science Foundation of P. R. of China (Grant number 51277115), and the Shandong Provincial Natural Science Foundation (Grant number ZR2018MEE037).

References

  1. Spagnuolo, G., Petrone, G., Araujo, S.V., et al.: Renewable energy operation and conversion schemes: a summary of discussions during the seminar on renewable energy systems. IEEE Ind. Electron. Mag. 4(1), 38-51 (2010) https://doi.org/10.1109/MIE.2010.935863
  2. Zhao, B., Song, Q., Liu, W., et al.: Dead-time effect of the high frequency isolated bidirectional full-bridge DC-DC converter: comprehensive theoretical analysis and experimental verification. IEEE Trans. Power Electron. 29(4), 1667-1680 (2014) https://doi.org/10.1109/TPEL.2013.2271511
  3. Jung, J., Kim, H., Ryu, M., et al.: Design methodology of bidirectional CLLC resonant converter for high-frequency isolation of DC distribution systems. IEEE Trans. Power Electron. 28(4), 1741-1755 (2013) https://doi.org/10.1109/TPEL.2012.2213346
  4. Wang, Z., Li, H.: A soft switching three-phase current-fed bidirectional DC-DC converter with high efficiency over a wide input voltage range. IEEE Trans. Power Electron. 27(2), 669-684 (2012) https://doi.org/10.1109/TPEL.2011.2160284
  5. Hu, X., Wang, J., Li, L., et al.: A three-winding coupled-inductor DC-DC converter topology with high voltage gain and reduced switch stress. IEEE Trans. Power Electron. 33(2), 1453-1462 (2018) https://doi.org/10.1109/TPEL.2017.2689806
  6. Henn, G.A.L., Silva, R.N.A.L., Praca, P.P., et al.: Interleaved-boost converter with high voltage gain. IEEE Trans. Power Electron. 25(11), 2753-2761 (2010) https://doi.org/10.1109/TPEL.2010.2049379
  7. Li, W., He, X.: Review of nonisolated high-step-up DC/DC converters in photovoltaic grid-connected applications. IEEE Trans. Ind. Electron. 58(4), 1239-1250 (2011) https://doi.org/10.1109/TIE.2010.2049715
  8. Forouzesh, M., Siwakoti, Y.P., Gorji, S.A., et al.: Step-up DC-DC converters: a comprehensive review of voltage-boosting techniques, topologies, and applications. IEEE Trans. Power Electron. 32(12), 9143-9178 (2017) https://doi.org/10.1109/TPEL.2017.2652318
  9. Morales-Saldana, J.A., Gutierrez, E.E.C., Leyva-Ramos, J.: Modeling of switch-mode DC-DC cascade converters. IEEE Trans. Aerosp. Electron Syst. 38(1), 295-299 (2002) https://doi.org/10.1109/7.993249
  10. Leyva-Ramos, J., Ortiz-Lopez, M.G., Diaz-Saldierna, L.H., et al.: Switching regulator using a quadratic boost converter for wide DC conversion ratios. IET Power Electron. 2(5), 605-613 (2009) https://doi.org/10.1049/iet-pel.2008.0169
  11. Axelrod, B., Berkovich, Y., Ioinovici, A.: Switched-capacitor/switched-inductor structures for getting transformerless hybrid DC-DC PWM converters. IEEE Trans. Circuits Syst. 55(2), 687-696 (2008) https://doi.org/10.1109/TCSI.2008.916403
  12. Ismail, E.H., Al-Saffar, M.A., Sabzail, A.J.: A family of single-switch PWM converters with high step-up conversion ratio. IEEE Trans. Circuits Syst. 55(4), 1159-1171 (2008) https://doi.org/10.1109/TCSI.2008.916427
  13. Nouri, T., Hosseini, S.H., Babaei, E., et al.: Generalised transformerless ultra step-up DC-DC converter with reduced voltage stress on semiconductors. IET Power Electron. 7(11), 2791-2805 (2014) https://doi.org/10.1049/iet-pel.2013.0933
  14. Zhang, Y., Gao, Y., Zhou, L., et al.: A switched-capacitor bidirectional DC-DC converter with wide voltage gain range for electric vehicles with hybrid energy sources. IEEE Trans. Power Electron. 33(11), 9459-9469 (2018) https://doi.org/10.1109/tpel.2017.2788436
  15. Pires, V.F., Foito, D., Cordeiro, A.: A DC-DC converter with quadratic gain and bidirectional capability for batteries/supercapacitors. IEEE Trans. Ind. Appl. 54(1), 274-285 (2018) https://doi.org/10.1109/tia.2017.2748926
  16. Baddipadiga, B.P., Ferdowsi, M.: A high-voltage-gain DC-DC converter based on modified dickson charge pump voltage multiplier. IEEE Trans. Power Electron. 32(10), 7707-7715 (2017) https://doi.org/10.1109/TPEL.2016.2594016
  17. Zhu, B., Zeng, Q., Vilathgamuwa, D.M., et al.: Non-isolated high-voltage gain dual-input DC/DC converter with a ZVT auxiliary circuit. IET Power Electron. 12(4), 861-868 (2019) https://doi.org/10.1049/iet-pel.2018.5465
  18. Zhao, Q., Lee, C.: High-efficiency, high step-up DC-DC converter. IEEE Trans. Power Electron. 18(1), 65-73 (2003) https://doi.org/10.1109/TPEL.2002.807188
  19. Wu, T., Lai, Y., Hung, J., et al.: Boost converter with coupled inductors and buck-boost type of active clamp. IEEE Trans. Ind. Electron. 55(1), 154-162 (2008) https://doi.org/10.1109/TIE.2007.903925
  20. Wai, R., Duan, R.: High step-up converter with coupled-inductor. IEEE Trans. Power Electron. 20(5), 1025-1035 (2005)
  21. Liu, H., Wang, L., Ji, Y., et al.: A novel reversal coupled inductor high-conversion-ratio bidirectional DC-DC converter. IEEE Trans. Power Electron. 33(6), 4968-4979 (2018) https://doi.org/10.1109/tpel.2017.2725358
  22. Lee, Y., Ko, Y., Cheng, M., et al.: Multiphase zero-current switching bidirectional converters and battery energy storage application. IEEE Trans. Power Electron. 28(8), 3806-3815 (2013) https://doi.org/10.1109/TPEL.2012.2227822
  23. Kwon, M., Oh, S., Choi, S.: High gain soft-switching bidirectional DC-DC converter for eco-friendly vehicles. IEEE Trans. Power Electron. 29(4), 1659-1666 (2014) https://doi.org/10.1109/TPEL.2013.2271328
  24. Shenoy, P.S., Amaro, M., Morroni, J., et al.: Comparison of a buck converter and a series capacitor buck converter for high-frequency, high-conversion-ratio voltage regulators. IEEE Trans. Power Electron. 31(10), 7006-7015 (2016) https://doi.org/10.1109/TPEL.2015.2508018
  25. Kim, K., Cha, H., Park, S., et al.: A modified series-capacitor high conversion ratio DC-DC converter eliminating start-up voltage stress problem. IEEE Trans. Power Electron. 33(1), 8-12 (2018) https://doi.org/10.1109/TPEL.2017.2705705
  26. Zhang, L., Chakraborty, S.: An interleaved series-capacitor tapped buck converter for high step-down DC/DC application. IEEE Trans. Power Electron. 3(7), 6565-6574 (2019) https://doi.org/10.1109/TPEL.2018.2877309
  27. Roy, J., Ayyanar, R.: Sensor-less current sharing over wide operating range for extended-duty-ratio boost converter. IEEE Trans. Power Electron. 32(11), 8763-8777 (2017) https://doi.org/10.1109/TPEL.2016.2640319